ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical I-band Linear Polarimetry of the Magnetar 4U 0142+61 with Subaru

251   0   0.0 ( 0 )
 نشر من قبل Zhongxiang Wang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Wang




اسأل ChatGPT حول البحث

The magnetar 4U~0142+61 has been well studied at optical and infrared wavelengths and is known to have a complicated broad-band spectrum over the wavelength range. Here we report the result from our linear imaging polarimetry of the magnetar at optical $I$-band. From the polarimetric observation carried out with the 8.2-m Subaru telescope, we determine the degree of linear polarization $P=1.0pm$3.4%, or $Pleq$5.6% (90% confidence level). Considering models suggested for optical emission from magnetars, we discuss the implications of our result. The upper limit measurement indicates that different from radio pulsars, magnetars probably would not have strongly polarized optical emission if the emission arises from their magnetosphere as suggested.



قيم البحث

اقرأ أيضاً

4U 0142+61 is one of a small class of persistently bright magnetars. Here we report on a monitoring campaign of 4U 0142+61 from 2011 July 26 - 2016 June 12 using the Swift X-ray Telescope, continuing a 16 year timing campaign with the Rossi X-ray Tim ing Explorer. We show that 4U 0142+61 had two radiatively loud timing events, on 2011 July 29 and 2015 February 28, both with short soft gamma-ray bursts, and a long-lived flux decay associated with each case. We show that the 2015 timing event resulted in a net spin-down of the pulsar due to over-recovery of a glitch. We compare this timing event to previous such events in other high-magnetic-field pulsars, and discuss net spin-down glitches now seen in several young, high-B pulsars.
Magnetars are a special type of neutron stars, considered to have extreme dipole magnetic fields reaching ~1e+11 T. The magnetar 4U 0142+61, one of prototypes of this class, was studied in broadband X-rays (0.5-70 keV) with the Suzaku observatory. In hard X-rays (15-40 keV), its 8.69 sec pulsations suffered slow phase modulations by +/-0.7 sec, with a period of ~15 hours. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by ~1.6e-4 in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong toroidal magnetic field, ~1e+12 T, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.
163 - Fotis P. Gavriil 2007
After 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months. During the active phase, several bursts were detected, and many aspects of the X-ray emission changed. We report on the discovery of six X-ray bursts, the first ever seen from this AXP in ~10 years of Rossi X-ray Timing Explorer (RXTE) monitoring. All the bursts occurred in the interval between 2006 April 6 and 2007 February 7. The bursts had the canonical fast rise slow decay profiles characteristic of SGR/AXP bursts. The burst durations ranged from 8-3x10^3 s as characterized by T90,these are very long durations even when compared to the broad T90 distributions of other bursts from SGRs and AXPs. The first five burst spectra are well modeled by simple blackbodies, with temperature kT ~2-6 keV. However, the sixth burst had a complicated spectrum consisting of at least three emission lines with possible additional emission and absorption lines. The most significant feature was at ~14 keV. Similar 14-keV spectral features were seen in bursts from AXPs 1E 1048.1-5937 and XTE J1810-197. If this feature is interpreted as a proton cyclotron line, then it supports the existence of a magnetar-strength field for these AXPs. Several of the bursts were accompanied by a short-term pulsed flux enhancement. We discuss these events in the context of the magnetar model.
Archival NuSTAR data of the magnetar 4U0142+61, acquired in 2014 March for a total time span of 258 ks, were analyzed. This is to reconfirm the 55 ks modulation in the hard X-ray pulse phases of this source, found with a Suzaku observation in 2009 (M akishima et al. 2014). Indeed, the 10-70 keV X-ray pulsation, detected with NuSTAR at 8.68917s, was found to be also phase-modulated (at 98 percent confidence or higher) at the same 55 ks period, or half that value. Furthermore, a brief analysis of another Suzaku data set of 4U0142+61, acquired in 2013, reconfirmed the same 55 ks phase modulation in the 15-40 keV pulses. Thus, the hard X-ray pulse-phase modulation was detected with Suzaku (in 2009 and 2013) and NuSTAR (in 2014) at a consistent period. However, the modulation amplitude varied significantly; A=0.17 s with Suzaku (2009), A=1.2 s with Suzaku (2013), and A=0.17 s with NuSTAR. In addition, the phase modulation properties detected with NuSTAR differed considerably between the first 1/3 and the latter 2/3 of the observation. In energies below 10 keV, the pulse-phase modulation was not detected with either Suzaku or NuSTAR. These results reinforce the view of Makishima et al. (2014); the neutron star in 4U0142+61 keeps free precession, under a slight axial deformation due probably to ultra-strong toroidal magnetic fields of 1e16 G. The wobbling angle of precession should remain constant, but the pulse-phase modulation amplitude varies on time scales of months to years, presumably as asymmetry of the hard X-ray emission pattern around the stars axis changes.
Magnetars are an extreme, highly magnetized class of isolated neutron stars whose large X-ray luminosity is believed to be driven by their high magnetic field. In this work we study for the first time the possible very high energy gamma-ray emission above 100 GeV from magnetars, observing the sources 4U 0142+61 and 1E 2259+586. We observed the two sources with atmospheric Cherenkov telescopes in the very high energy range (E > 100 GeV). 4U 0142+61 was observed with the MAGIC I telescope in 2008 for ~25 h and 1E 2259+586 was observed with the MAGIC stereoscopic system in 2010 for ~14 h. The data were analyzed with the standard MAGIC analysis software. Neither magnetar was detected. Upper limits to the differential and integral flux above 200 GeV were computed using the Rolke algorithm. We obtain integral upper limits to the flux of 1.52*10^-12cm^-2 s^-1 and 2.7*10^-12cm^-2 s^-1 with a confidence level of 95% for 4U 0142+61 and 1E 2259+586, respectively. The resulting differential upper limits are presented together with X-ray data and upper limits in the GeV energy range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا