ﻻ يوجد ملخص باللغة العربية
This article considers the stochastic optimal control of discrete-time linear systems subject to (possibly) unbounded stochastic disturbances, hard constraints on the manipulated variables, and joint chance constraints on the states. A tractable convex second-order cone program (SOCP) is derived for calculating the receding-horizon control law at each time step. Feedback is incorporated during prediction by parametrizing the control law as an affine function of the disturbances. Hard input constraints are guaranteed by saturating the disturbances that appear in the control law parametrization. The joint state chance constraints are conservatively approximated as a collection of individual chance constraints that are subsequently relaxed via the Cantelli-Chebyshev inequality. Feasibility of the SOCP is guaranteed by softening the approximated chance constraints using the exact penalty function method. Closed-loop stability in a stochastic sense is established by establishing that the states satisfy a geometric drift condition outside of a compact set such that their variance is bounded at all times. The SMPC approach is demonstrated using a continuous acetone-butanol-ethanol fermentation process, which is used for production of high-value-added drop-in biofuels.
A stochastic model predictive control (SMPC) approach is presented for discrete-time linear systems with arbitrary time-invariant probabilistic uncertainties and additive Gaussian process noise. Closed-loop stability of the SMPC approach is establish
In this paper, an attack-resilient estimation algorithm is presented for linear discrete-time stochastic systems with state and input constraints. It is shown that the state estimation errors of the proposed estimation algorithm are practically exponentially stable.
We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We consider minimization of an expected value cost over a finite horizon. Hard constraints are introduced first, and then reformula
Stochastic uncertainties in complex dynamical systems lead to variability of system states, which can in turn degrade the closed-loop performance. This paper presents a stochastic model predictive control approach for a class of nonlinear systems wit
In chance-constrained OPF models, joint chance constraints (JCCs) offer a stronger guarantee on security compared to single chance constraints (SCCs). Using Booles inequality or its improv