ترغب بنشر مسار تعليمي؟ اضغط هنا

Harnessing non-Markovian quantum memory by environmental coupling

445   0   0.0 ( 0 )
 نشر من قبل Rosario Lo Franco
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting from a Markovian one in absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for zero control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes. These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a qubit, based on non-Markovianity.



قيم البحث

اقرأ أيضاً

We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lor entzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.
Simulating complex processes can be intractable when memory effects are present, often necessitating approximations in the length or strength of the memory. However, quantum processes display distinct memory effects when probed differently, precludin g memory approximations that are both universal and operational. Here, we show that it is nevertheless sensible to characterize the memory strength across a duration of time with respect to a sequence of probing instruments. We propose a notion of process recovery, leading to accurate predictions for any multi-time observable, with errors bounded by the memory strength. We then apply our framework to an exactly solvable non-Markovian model, highlighting the decay of memory for certain instruments that justify its truncation. Our formalism provides an unambiguous description of memory strength,paving the way for practical compression and recovery techniques pivotal to near-term quantum technologies.
Crossing a quantum critical point in finite time challenges the adiabatic condition due to the closing of the energy gap, which ultimately results in the formation of excitations. Such non-adiabatic excitations are typically deemed detrimental in man y scenarios, and consequently several strategies have been put forward to circumvent their formation. Here, however, we show how these non-adiabatic excitations -- originated from the failure to meet the adiabatic condition due to the presence of a quantum critical point -- can be controlled and thus harnessed to perform certain tasks advantageously. We focus on closed cycles reaching the quantum critical point of fully-connected models analyzing two examples. First, a quantum battery that is loaded by approaching a quantum critical point, whose stored and extractable work increases exponentially via repeating cycles. Second, a scheme for the fast preparation of spin squeezed states containing multipartite entanglement that offer a metrological advantage. The corresponding figure of merit in both cases crucially depends on universal critical exponents and the scaling of the protocol driving the system in the vicinity of the transition. Our results highlight the rich interplay between quantum thermodynamics and metrology with critical nonequilibrium dynamics.
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which ca nonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These systems are often referred to as non-Markovian systems. After a brief summary of different measures of non-Markovianity that have been introduced over the last few years we restrict our analysis to the investigation of information flow between system and environment. Within this framework we introduce an important application of non-Markovianity, namely its use as a quantum probe of complex quantum systems. To illustrate this point we consider quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how properties of these systems can be extracted by means of non-Markovianity measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا