ﻻ يوجد ملخص باللغة العربية
We consider a class of parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency of the forcing is sufficiently high, KAM theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency forcing, but in that case we need the amplitude of the forcing to be not too large; however we are still able to consider amplitudes of the forcing which are outside of the perturbation regime. Our results are illustrated by means of numerical simulations for the system of a forced cubic oscillator. In addition, we find numerically that the dynamics are stable even when the forcing amplitude is very large (beyond the range of validity of the analytical results), provided the frequency of the forcing is taken correspondingly low.
The ability of a circadian system to entrain to the 24-hour light-dark cycle is one of its most important properties. A new tool, called the entrainment map, was recently introduced to study this process for a single oscillator. Here we generalize th
Define the following order among all natural numbers except for 2 and 1: [ 4gg 6gg 3gg dots gg 4ngg 4n+2gg 2n+1gg 4n+4ggdots ] Let $f$ be a continuous interval map. We show that if $mgg s$ and $f$ has a cycle with no division (no block structure) of
The impact of the El Ni~no-Southern Oscillation (ENSO) on the extratropics is investigated in an idealized, reduced-order model that has a tropical and an extratropical module. Unidirectional ENSO forcing is used to mimick the atmospheric bridge betw
In this paper, we study the Poisson stability (in particular, stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, almost automorphy, recurrence in the sense of Birkhoff, Levitan almost periodicity, pseudo periodicity, almost recurr
We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quench