ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector

424   0   0.0 ( 0 )
 نشر من قبل Lixing You
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrated a laser depth imaging system based on the time-correlated single-photon counting technique, which was incorporated with a low-jitter superconducting nanowire single-photon detector (SNSPD), operated at the wavelength of 1550 nm. A sub-picosecond time-bin width was chosen for photon counting, resulting in a discrete noise of less than one/two counts for each time bin under indoor/outdoor daylight conditions, with a collection time of 50 ms. Because of the low-jitter SNSPD, the target signal histogram was significantly distinguishable, even for a fairly low retro-reflected photon flux. The depth information was determined directly by the highest bin counts, instead of using any data fitting combined with complex algorithms. Millimeter resolution depth imaging of a low-signature object was obtained, and more accurate data than that produced by the traditional Gaussian fitting method was generated. Combined with the intensity of the return photons, three-dimensional reconstruction overlaid with reflectivity data was realized.



قيم البحث

اقرأ أيضاً

An abnormal increase in the SDE was observed for superconducting nanowire single-photon detectors (SNSPDs) when the bias current (Ib) was close to the switching current (Isw). By introducing the time-correlated single-photon counting technique, we in vestigated the temporal histogram of the detection counts of an SNSPD under illumination. The temporal information helps us to distinguish photon counts from dark counts in the time domain. In this manner, the dark count rate (DCR) under illumination and the accurate SDE can be determined. The DCR under moderate illumination may be significantly larger than the conventional DCR measured without illumination under a high Ib, which causes the abnormal increase in the SDE. The increased DCR may be explained by the suppression of Isw under illumination.
Detecting spatial and temporal information of individual photons by using single-photon-detector (SPD) arrays is critical to applications in spectroscopy, communication, biological imaging, astronomical observation, and quantum-information processing . Among the current SPDs1,detectors based on superconducting nanowires have outstanding performance2, but are limited in their ability to be integrated into large scale arrays due to the engineering difficulty of high-bandwidth cryogenic electronic readout3-8. Here, we address this problem by demonstrating a scalable single-photon imager using a single continuous photon-sensitive superconducting nanowire microwave-plasmon transmission line. By appropriately designing the nanowires local electromagnetic environment so that the nanowire guides microwave plasmons, the propagating voltages signals generated by a photon-detection event were slowed down to ~ 2% of the speed of light. As a result, the time difference between arrivals of the signals at the two ends of the nanowire naturally encoded the position and time of absorption of the photon. Thus, with only two readout lines, we demonstrated that a 19.7-mm-long nanowire meandered across an area of 286 {mu}m * 193 {mu}m was capable of resolving ~590 effective pixels while simultaneously recording the arrival times of photons with a temporal resolution of 50 ps. The nanowire imager presents a scalable approach to realizing high-resolution photon imaging in time and space.
648 - Hao Li , Lu Zhang , Lixing You 2015
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo nic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 um. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps.
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) has delivered excellent performances, and has had a great impact on a range of research fields. The timing jitter, which denotes the temporal resolution o f the detection, is a crucial parameter for many applications. Despite extensive work since their apparition, the lowest jitter achievable with SNSPDs is still not clear, and the origin of the intrinsic limits is not fully understood. Understanding its intrinsic behaviour and limits is a mandatory step toward improvements. Here, we report our experimental study on the intrinsically-limited timing jitter in molybdenum silicide (MoSi) SNSPDs. We show that to reach intrinsic jitter, several detector properties such as the latching current and the kinetic inductance of the devices have to be understood. The dependence on the nanowire cross-section and the energy dependence of the intrinsic jitter are exhibited, and the origin of the limits are explicited. System timing jitter of 6.0 ps at 532 nm and 10.6 ps at 1550 nm photon wavelength have been obtained.
We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavele ngth regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 {mu}A) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4*10^-19 W/(Hz^1/2) at 765 nm) and timing jitter (down to 23 ps).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا