ﻻ يوجد ملخص باللغة العربية
We comment on the model proposed by Orenstein and Dodge in arXiv:1506.06758v1, which describes time-domain terahertz measurements of transiently generated, high-electron-mobility (or superconducting) phases of solids. The authors main conclusion is that time-domain terahertz spectroscopy does not measure a response function that is mathematically identical to the transient optical conductivity. We show that although this is correct, the difference between the measured response function and the microscopic optical conductivity is small for realistic experimental parameters. We also show that for the experiments reported by our group on light-induced superconducting-like phases in cuprates and in organic conductors, the time-domain terahertz yields a very good estimate for the optical conductivity.
Time-resolved terahertz time-domain spectroscopy (THz-TDS) is an ideal tool for probing photoinduced nonequilibrium metallic and superconducting states. Here, we focus on the interpretation of the two-dimensional response function $Sigma(omega;t)$ th
The recent Comment by Vorontsov [arXiv:2007.13696] claims that surface pair-density-wave superconductivity with critical temperature higher than the bulk FFLO critical temperature is not supported by microscopic theory. The conclusion is reached by u
We argue that cutoff in the London model cannot be settled without use of the microscopic theory.
Recently, Wang $et$ $al.$ have reported the observation of unconventional superconductivity in the Weyl semimetal TaAs [arXiv:1607.00513]. The authors have written textit{A conductance plateau and sharp double dips are observed in the point contact s
We measure the anisotropic mid-infrared response of electrons and phonons in bulk YBa2Cu3O7 after femtosecond photoexcitation. A line shape analysis of specific lattice modes reveals their transient occupation and coupling to the superconducting cond