ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely-bright submillimeter galaxies beyond the Lupus-I star-forming region

159   0   0.0 ( 0 )
 نشر من قبل Yoichi Tamura
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4$-$344318 and MM J154132.7$-$350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 $mu$m and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are $z_{rm photo} simeq$ 4-5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-$z$ ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at $S_{rm 1.1mm} ge 25$ mJy, combined with other two 1.1-mm brightest sources, are $0.70 ^{+0.56}_{-0.34}$ deg$^{-2}$, which is consistent with a model prediction that accounts for flux magnification due to strong gravitational lensing. Unexpectedly, a $z > 3$ SMG and a Galactic dense starless core (e.g., a first hydrostatic core) could be similar in the mid-infrared to millimeter spectral energy distributions and spatial structures at least at $gtrsim 1$. This indicates that it is necessary to distinguish the two possibilities by means of broad band photometry from the optical to centimeter and spectroscopy to determine the redshift, when a compact object is identified toward Galactic star-forming regions.



قيم البحث

اقرأ أيضاً

We report spectroscopic redshift measurements for three bright submillimeter galaxies (SMGs) near the GOODS-N field, each with SCUBA-2 850 micron fluxes > 10 mJy, using the Northern Extended Millimeter Array (NOEMA). Our molecular linescan observatio ns of these sources, which occupy a ~7 arcmin$^2$ area outside of the HST coverage of the field, reveal that two lie at $z sim$ 3.14. In the remaining object, we detect line emission consistent with CO(7-6), [C I], and H2O at $z$ = 4.42. The far-infrared spectral energy distributions of these galaxies, constrained by SCUBA-2, NOEMA, and Herschel/SPIRE, indicate instantaneous SFRs $sim4000 ~{rm M_{odot}~yr^{-1}}$ in the $z$ = 4.42 galaxy and $sim 2500~{rm M_{odot}~yr^{-1}}$ in the two $z sim$ 3.14 galaxies. Based on our sources CO line luminosities, we estimate $M_{{rm gas}}sim10^{11} M_{odot}$ and find gas depletion timescales of $tau_{{rm depl}}sim 50$ Myr, consistent with findings in other high-redshift SMGs. Finally, we show that the two $z sim$ 3.14 sources, which alone occupy a volume $sim$10 Mpc$^3$, very likely mark the location of a protocluster of bright SMGs and less dusty optical sources.
We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.
51 - Soh Ikarashi 2017
We report the study of far-IR sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave ($lambd a_{rm obs}=1100 mu$m) sizes of 69 ALMA-identified SMGs, selected with $geq10$$sigma$ confidence on ALMA images ($F_{rm 1100 mu m}=1.7$--7.4 mJy). We found that all the SMGs are located above an avoidance region in the millimeter size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at $z=1$--3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median $R_{rm c,e} = 1.6^{+0.34}_{-0.21}$ and 1.5$^{+0.93}_{-0.24}$ kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median $R_{rm c,e}=1.0^{+0.20}_{-0.20}$ kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.
The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at $R_{rm G}$ $ge$ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer (WISE) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions in the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at $R_{rm G}$ $ge$ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) $^{12}$CO survey of the outer Galaxy, of which the survey region is 102$^circ$.49 $le$ $l$ $le$ 141$^circ$.54, $-$3$^circ$.03 $le$ $b$ $le$ 5$^circ$.41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star-formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star-formation properties, including star-formation rate, star-formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.
Deep far-infrared (FIR) cosmological surveys are known to be affected by source confusion, causing issues when examining the main sequence (MS) of star forming galaxies. This has typically been partially tackled by the use of stacking. However, stack ing only provides the average properties of the objects in the stack. This work aims to trace the MS over $0.2leq z<6.0$ using the latest de-blended Herschel photometry, which reaches $approx10$ times deeper than the 5$sigma$ confusion limit in SPIRE. This provides more reliable star formation rates (SFRs), especially for the fainter galaxies, and hence a more reliable MS. We built a pipeline that uses the spectral energy distribution (SED) modelling and fitting tool CIGALE to generate flux density priors in the Herschel SPIRE bands. These priors were then fed into the de-blending tool XID+ to extract flux densities from the SPIRE maps. Multi-wavelength data were combined with the extracted SPIRE flux densities to constrain SEDs and provide stellar mass (M$_{star}$) and SFRs. These M$_{star}$ and SFRs were then used to populate the SFR-M$_{star}$ plane over $0.2leq z<6.0$. No significant evidence of a high-mass turn-over was found; the best fit is thus a simple two-parameter power law of the form log(SFR)$=alpha[$log(M$_{star})-10.5]+beta$. The normalisation of the power law increases with redshift, rapidly at $zlesssim1.8$, from $0.58pm0.09$ at $zapprox0.37$ to $1.31pm0.08$ at $zapprox1.8$. The slope is also found to increase with redshift, perhaps with an excess around $1.8leq z<2.9$. The increasing slope indicates that galaxies become more self-similar as redshift increases, implying that the specific SFR of high-mass galaxies increases over $z=0.2$ to $z=6.0$, becoming closer to that of low-mass galaxies. The excess in the slope at $1.8leq z<2.9$, if present, coincides with the peak of the cosmic star formation history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا