ﻻ يوجد ملخص باللغة العربية
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwells equations, Poincare covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwells equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charg
A novel C*-algebraic framework is presented for relativistic quantum field theories, fixed by a Lagrangean. It combines the postulates of local quantum physics, encoded in the Haag-Kastler axioms, with insights gained in the perturbative approach to
Using the fact that the algebra M := M_N(C) of NxN complex matrices can be considered as a reduced quantum plane, and that it is a module algebra for a finite dimensional Hopf algebra quotient H of U_q(sl(2)) when q is a root of unity, we reduce this
In this work we discuss the elements required for the construction of the operator algebra for the space of paths over a simply laced $SU(3)$ graph. These operators are an important step in the construction of the bialgebra required to find the parti
We present Painlev{e} VI sigma form equations for the general Ising low and high temperature two-point correlation functions $ C(M,N)$ with $M leq N $ in the special case $ u = -k$ where $ u = , sinh 2E_h/k_BT/sinh 2E_v/k_BT$. More specifically four