ترغب بنشر مسار تعليمي؟ اضغط هنا

The volume of a set of arcs on a variety

166   0   0.0 ( 0 )
 نشر من قبل Tommaso de Fernex
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we give a definition of volume for subsets in the space of arcs of an algebraic variety, and study its properties. Our main result relates the volume of a set of arcs on a Cohen-Macaulay variety to its jet-codimension, a notion which generalizes the codimension of a cylinder in the arc space of a smooth variety.



قيم البحث

اقرأ أيضاً

66 - Tommaso de Fernex 2016
The paper surveys several results on the topology of the space of arcs of an algebraic variety and the Nash problem on the arc structure of singularities.
89 - Olivier Benoist 2020
Let $X$ be a smooth projective real algebraic variety. We give new positive and negative results on the problem of approximating a submanifold of the real locus of $X$ by real loci of subvarieties of $X$, as well as on the problem of determining the subgroups of the Chow groups of $X$ generated by subvarieties with nonsingular real loci, or with empty real loci.
We introduce the notion of r-th Terracini locus of a variety and we compute it for at most three points on a Segre variety.
63 - Wahei Hara 2016
In this paper, we study the Rouquier dimension of the singularity category of a variety with rational singularity. We construct an upper bound for the dimension of $mathrm{D}_{mathrm{sg}}(X)$ if $X$ has at worst rational singularities and $dim X_{mathrm{sing}} leq 1$.
120 - Erik Insko , Julianna Tymoczko , 2018
Hessenberg varieties are subvarieties of the flag variety parametrized by a linear operator $X$ and a nondecreasing function $h$. The family of Hessenberg varieties for regular $X$ is particularly important: they are used in quantum cohomology, in co mbinatorial and geometric representation theory, in Schubert calculus and affine Schubert calculus. We show that the classes of a regular Hessenberg variety in the cohomology and $K$-theory of the flag variety are given by making certain substitutions in the Schubert polynomial (respectively Grothendieck polynomial) for a permutation that depends only on $h$. Our formula and our methods are different from a recent result of Abe, Fujita, and Zeng that gives the class of a regular Hessenberg variety with more restrictions on $h$ than here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا