ﻻ يوجد ملخص باللغة العربية
We show that there exists a Boolean function $F$ which observes the following separations among deterministic query complexity $(D(F))$, randomized zero error query complexity $(R_0(F))$ and randomized one-sided error query complexity $(R_1(F))$: $R_1(F) = widetilde{O}(sqrt{D(F)})$ and $R_0(F)=widetilde{O}(D(F))^{3/4}$. This refutes the conjecture made by Saks and Wigderson that for any Boolean function $f$, $R_0(f)=Omega({D(f)})^{0.753..}$. This also shows widest separation between $R_1(f)$ and $D(f)$ for any Boolean function. The function $F$ was defined by G{{o}}{{o}}s, Pitassi and Watson who studied it for showing a separation between deterministic decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently of us, Ambainis et al proved that different variants of the function $F$ certify optimal (quadratic) separation between $D(f)$ and $R_0(f)$, and polynomial separation between $R_0(f)$ and $R_1(f)$. Viewed as separation results, our results are subsumed by those of Ambainis et al. However, while the functions considerd in the work of Ambainis et al are different variants of $F$, we work with the original function $F$ itself.
We study the composition question for bounded-error randomized query complexity: Is R(f o g) = Omega(R(f) R(g)) for all Boolean functions f and g? We show that inserting a simple Boolean function h, whose query complexity is only Theta(log R(g)), in
Let $f:{0,1}^n rightarrow {0,1}$ be a Boolean function. The certificate complexity $C(f)$ is a complexity measure that is quadratically tight for the zero-error randomized query complexity $R_0(f)$: $C(f) leq R_0(f) leq C(f)^2$. In this paper we stud
Let the randomized query complexity of a relation for error probability $epsilon$ be denoted by $R_epsilon(cdot)$. We prove that for any relation $f subseteq {0,1}^n times mathcal{R}$ and Boolean function $g:{0,1}^m rightarrow {0,1}$, $R_{1/3}(fcirc
Let $R_epsilon(cdot)$ stand for the bounded-error randomized query complexity with error $epsilon > 0$. For any relation $f subseteq {0,1}^n times S$ and partial Boolean function $g subseteq {0,1}^m times {0,1}$, we show that $R_{1/3}(f circ g^n) in
The pointer function of G{{o}}{{o}}s, Pitassi and Watson cite{DBLP:journals/eccc/GoosP015a} and its variants have recently been used to prove separation results among various measures of complexity such as deterministic, randomized and quantum query