ترغب بنشر مسار تعليمي؟ اضغط هنا

Social media affects the timing, location, and severity of school shootings

126   0   0.0 ( 0 )
 نشر من قبل Peter Sheridan Dodds
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past two decades, school shootings within the United States have repeatedly devastated communities and shaken public opinion. Many of these attacks appear to be `lone wolf ones driven by specific individual motivations, and the identification of precursor signals and hence actionable policy measures would thus seem highly unlikely. Here, we take a system-wide view and investigate the timing of school attacks and the dynamical feedback with social media. We identify a trend divergence in which college attacks have continued to accelerate over the last 25 years while those carried out on K-12 schools have slowed down. We establish the copycat effect in school shootings and uncover a statistical association between social media chatter and the probability of an attack in the following days. While hinting at causality, this relationship may also help mitigate the frequency and intensity of future attacks.



قيم البحث

اقرأ أيضاً

Recent wide-spread adoption of electronic and pervasive technologies has enabled the study of human behavior at an unprecedented level, uncovering universal patterns underlying human activity, mobility, and inter-personal communication. In the presen t work, we investigate whether deviations from these universal patterns may reveal information about the socio-economical status of geographical regions. We quantify the extent to which deviations in diurnal rhythm, mobility patterns, and communication styles across regions relate to their unemployment incidence. For this we examine a country-scale publicly articulated social media dataset, where we quantify individual behavioral features from over 145 million geo-located messages distributed among more than 340 different Spanish economic regions, inferred by computing communities of cohesive mobility fluxes. We find that regions exhibiting more diverse mobility fluxes, earlier diurnal rhythms, and more correct grammatical styles display lower unemployment rates. As a result, we provide a simple model able to produce accurate, easily interpretable reconstruction of regional unemployment incidence from their social-media digital fingerprints alone. Our results show that cost-effective economical indicators can be built based on publicly-available social media datasets.
Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someones location from their friends locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a new model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of these networks such as: i) the size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by the model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.
Standard epidemiological models for COVID-19 employ variants of compartment (SIR) models at local scales, implicitly assuming spatially uniform local mixing. Here, we examine the effect of employing more geographically detailed diffusion models based on known spatial features of interpersonal networks, most particularly the presence of a long-tailed but monotone decline in the probability of interaction with distance, on disease diffusion. Based on simulations of unrestricted COVID-19 diffusion in 19 U.S cities, we conclude that heterogeneity in population distribution can have large impacts on local pandemic timing and severity, even when aggregate behavior at larger scales mirrors a classic SIR-like pattern. Impacts observed include severe local outbreaks with long lag time relative to the aggregate infection curve, and the presence of numerous areas whose disease trajectories correlate poorly with those of neighboring areas. A simple catchment model for hospital demand illustrates potential implications for health care utilization, with substantial disparities in the timing and extremity of impacts even without distancing interventions. Likewise, analysis of social exposure to others who are morbid or deceased shows considerable variation in how the epidemic can appear to individuals on the ground, potentially affecting risk assessment and compliance with mitigation measures. These results demonstrate the potential for spatial network structure to generate highly non-uniform diffusion behavior even at the scale of cities, and suggest the importance of incorporating such structure when designing models to inform healthcare planning, predict community outcomes, or identify potential disparities.
The occurrence of new events in a system is typically driven by external causes and by previous events taking place inside the system. This is a general statement, applying to a range of situations including, more recently, to the activity of users i n Online social networks (OSNs). Here we develop a method for extracting from a series of posting times the relative contributions of exogenous, e.g. news media, and endogenous, e.g. information cascade. The method is based on the fitting of a generalized linear model (GLM) equipped with a self-excitation mechanism. We test the method with synthetic data generated by a nonlinear Hawkes process, and apply it to a real time series of tweets with a given hashtag. In the empirical dataset, the estimated contributions of exogenous and endogenous volumes are close to the amounts of original tweets and retweets respectively. We conclude by discussing the possible applications of the method, for instance in online marketing.
We study the extent to which we can infer users geographical locations from social media. Location inference from social media can benefit many applications, such as disaster management, targeted advertising, and news content tailoring. The challenge s, however, lie in the limited amount of labeled data and the large scale of social networks. In this paper, we formalize the problem of inferring location from social media into a semi-supervised factor graph model (SSFGM). The model provides a probabilistic framework in which various sources of information (e.g., content and social network) can be combined together. We design a two-layer neural network to learn feature representations, and incorporate the learned latent features into SSFGM. To deal with the large-scale problem, we propose a Two-Chain Sampling (TCS) algorithm to learn SSFGM. The algorithm achieves a good trade-off between accuracy and efficiency. Experiments on Twitter and Weibo show that the proposed TCS algorithm for SSFGM can substantially improve the inference accuracy over several state-of-the-art methods. More importantly, TCS achieves over 100x speedup comparing with traditional propagation-based methods (e.g., loopy belief propagation).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا