ترغب بنشر مسار تعليمي؟ اضغط هنا

The radial profile and flattening of the Milky Ways stellar halo to $rm 80~$kpc from the SEGUE K-giant Survey

106   0   0.0 ( 0 )
 نشر من قبل Xiangxiang Xue
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterise the radial density, metallicity and flattening profile of the Milky Ways stellar halo, based on the large sample of 1757 spectroscopically confirmed giant stars from SDSS/SEGUE-2 after excising stars that were algorithmically attributed to apparent halo substructure (including the Sagittarius stream). Compared to BHB stars or RR Lyrae, giants are more readily understood tracers of the overall halo star population, with less bias in age or metallicity. The well-characterized selection function of the sample enables forward modelling of those data, based on ellipsoidal stellar density models, $ u_* (R,z)$, with Einasto profiles and (broken) power laws for their radial dependence, combined with a model for the metallicity gradient and the flattening profile. Among models with constant flattening, these data are reasonably well fit by an Einasto profile of $n=3.1pm 0.5$ with an effective radius $rm r_{eff} = 15pm2~$kpc and a flattening of $q=0.7pm 0.02$; or comparably well by an equally flattened broken power-law, with radial slopes of $alpha_{in}=2.1pm 0.3$ and $alpha_{out}=3.8pm 0.1$, with a break-radius of $r_{break}=18pm1$~kpc; this is largely consistent with earlier work. We find a modest, but significant metallicity gradient within the outer stellar halo, $rm [Fe/H]$ decreasing outward. If we allow for a variable flattening $q = f(r_{GC} )$, we find the distribution of halo giants to be considerably more flattened at small radii, $q({rm 10~kpc})sim 0.57$, compared to $q(>30{rm kpc})sim 0.8$. Remarkably, the data are then very well fit by a single power-law of index $rm sim 4.2pm0.1$ of the variable $r_qequivsqrt{R^2+(z/q(r))^2}$. In this simple and better fitting model, there is a break in flattening at $sim 20$~kpc, instead of a break in the radial density function.



قيم البحث

اقرأ أيضاً

We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopi cally as K giants from the Sloan Digital Sky Surveys SEGUE project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using BHB stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.
We present an online catalog of distance determinations for $rm 6036$ K giants, most of which are members of the Milky Ways stellar halo. Their medium-resolution spectra from SDSS/SEGUE are used to derive metallicities and rough gravity estimates, al ong with radial velocities. Distance moduli are derived from a comparison of each stars apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed $(g-r)_0$ color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in ${it prior}$ information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of $16%$, with distance estimates most precise for the least metal-poor stars near the tip of the red-giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc distant from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Ways halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierar chical assembly of the stellar halo. Using a cumulative close pair distribution (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at $rm r_{gc} < 20$ kpc.
146 - Ross Fadely 2011
We investigate the kinematic and photometric properties of the Segue 3 Milky Way companion using Keck/DEIMOS spectroscopy and Magellan/IMACS g and r-band imaging. Using maximum likelihood methods to analyze the photometry, we study the structure and stellar population of Segue 3. We find the half-light radius of Segue 3 is 26 +/- 5 (2.1 +/- 0.4 pc, for a distance of 17 kpc) and the absolute magnitude is a mere M_V = 0.0 +/- 0.8 mag, making Segue 3 the least luminous old stellar system known. We find Segue 3 to be consistent with a single stellar population, with an age of 12.0 +1.5/-0.4 Gyr and an [Fe/H] of -1.7 +0.07/-0.27. Line-of-sight velocities from the spectra are combined with the photometry to determine a sample of 32 stars which are likely associated with Segue 3. The member stars within three half-light radii have a velocity dispersion of 1.2 +/- 2.6 km/s. Photometry of the members indicates the stellar population has a spread in [Fe/H] of <0.3 dex. These facts, together with the small physical size of Segue 3, imply the object is likely an old, faint stellar cluster which contains no significant dark matter. We find tentative evidence for stellar mass loss in Segue 3 through the eleven candidate member stars outside of three half-light radii, as expected from dynamical arguments. Interpretation of the data outside of three half-light radii, is complicated by the objects spatial coincidence with a previously known halo substructure, which may enhance contamination of our member sample.
We map the stellar structure of the Galactic thick disk and halo by applying color-magnitude diagram (CMD) fitting to photometric data from the SEGUE survey, allowing, for the first time, a comprehensive analysis of their structure at both high and l ow latitudes using uniform SDSS photometry. Incorporating photometry of all relevant stars simultaneously, CMD fitting bypasses the need to choose single tracer populations. Using old stellar populations of differing metallicities as templates we obtain a sparse 3D map of the stellar mass distribution at |Z|>1 kpc. Fitting a smooth Milky Way model comprising exponential thin and thick disks and an axisymmetric power-law halo allows us to constrain the structural parameters of the thick disk and halo. The thick-disk scale height and length are well constrained at 0.75+-0.07 kpc and 4.1+-0.4 kpc, respectively. We find a stellar halo flattening within ~25 kpc of c/a=0.88+-0.03 and a power-law index of 2.75+-0.07 (for 7<R_{GC}<~30 kpc). The model fits yield thick-disk and stellar halo densities at the solar location of rho_{thick,sun}=10^{-2.3+-0.1} M_sun pc^{-3} and rho_{halo,sun}=10^{-4.20+-0.05} M_sun pc^{-3}, averaging over any substructures. Our analysis provides the first clear in situ evidence for a radial metallicity gradient in the Milky Ways stellar halo: within R<~15 kpc the stellar halo has a mean metallicity of [Fe/H]=-1.6, which shifts to [Fe/H]=-2.2 at larger radii. Subtraction of the best-fit smooth and symmetric model from the overall density maps reveals a wealth of substructures at all latitudes, some attributable to known streams and overdensities, and some new. A simple warp cannot account for the low latitude substructure, as overdensities occur simultaneously above and below the Galactic plane. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا