ﻻ يوجد ملخص باللغة العربية
Strong interactions between single spins and photons are essential for quantum networks and distributed quantum computation. They provide the necessary interface for entanglement distribution, non-destructive quantum measurements, and strong photon-photon interactions. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals exploit strong light-matter interactions to implement a quantum switch, where the spin flips the state of the photon and a photon flips the spin-state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin-state strongly modulates the cavity reflection coefficient, which conditionally flips the polarization state of a reflected photon on picosecond timescales. We also demonstrate the complementary effect where a single photon reflected from the cavity coherently rotates the spin. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, to deterministically control an optical signal with a single photon requires strong interactions with a q
Integrated quantum photonics provides a promising route towards scalable solid-state implementations of quantum networks, quantum computers, and ultra-low power opto-electronic devices. A key component for many of these applications is the photonic q
In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages including high single-photon efficiency and indistinguishability, high repetition rate (tens of GHz with Purcell enhancement), interconnect
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing archite
We demonstrate optical readout of a single electron spin using cavity quantum electrodynamics. The spin is trapped in a single quantum dot that is strongly coupled to a nanophotonic cavity. Selectively coupling one of the optical transitions of the q