ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright Star Astrometry with URAT

84   0   0.0 ( 0 )
 نشر من قبل Norbert Zacharias
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Norbert Zacharias




اسأل ChatGPT حول البحث

The U.S. Naval Observatory Robotic Astrometric Telescope (URAT) is observing the northern sky since April 2012 for an astrometric survey. Multiple overlaps per year are performed in a single bandpass (680$-$750 nm) using the redlens 20 cm aperture astrograph and a mosaic of large CCDs. Besides the regular, deep survey to magnitude 18.5, short exposures with an objective grating are taken to access stars as bright as 3rd magnitude. A brief overview of the program, observing and reductions is given. Positions on the 8 to 20 mas level are obtained of 66,202 Hipparcos stars at current epochs. These are compared to the Hipparcos Catalog to investigate its accuracy. About 20% of the observed Hipparcos stars are found to have inconsitent positions with the Hipparcos Catalog prediction on the 3 sigma level or over (about 75 mas or more discrepant position offsets). Some stars are now seen at an arcsec (or 25 sigma) off their Hipparcos Catalog predicted position.



قيم البحث

اقرأ أيضاً

The URAT Parallax Catalog (UPC) consists of 112,177 parallaxes. The catalog utilizes all Northern Hemisphere exposures from the United States Naval Observatory (USNO) Robotic Astrometric Telescope (URAT) obtained between April 2012 and June 2015. Rel ative parallaxes are converted to absolute using photometric distance estimates of UCAC4 reference stars. There are 2 groups of stars in this catalog: 1) 58,677 stars with prior published trigonometric parallax (Hipparcos, Yale Parallax Catalog, MEarth project and SIMBAD), and 2) 53,500 stars with first time trigonometric parallaxes as obtained from URAT data. More stringent selection criteria have been applied for group 2 then for group 1 in order to keep the rate of false detections low. The mean error in UPC parallaxes is 10.8 and 4.3 mas for groups 1 and 2, respectively. All stars in UPC are north of -13 deg Dec and between 6.5 and 17 mag. The UPC is published by CDS as catalog I/333 and the acronym has been registered with the IAU. The Finch & Zacharias (2016, in press with AJ) paper describes the data, reductions, and results of an about 1000 star subset (stars within 40 pc of the Sun) of the entire UPC. The UPC also provides accurate positions and proper motions on the ICRS. This is the largest parallax catalog published since the Hipparcos Catalog.
The Extrasolar Planet Search with PRIMA project (ESPRI) aims at characterising and detecting extrasolar planets by measuring the host stars reflex motion using the narrow-angle astrometry capability of the PRIMA facility at the Very Large Telescope I nterferometer. A first functional demonstration of the astrometric mode was achieved in early 2011. This marked the start of the astrometric commissioning phase with the purpose of characterising the instruments performance, which ultimately has to be sufficient for exoplanet detection. We show results obtained from the observation of bright visual binary stars, which serve as test objects to determine the instruments astrometric precision, its accuracy, and the plate scale. Finally, we report on the current status of the ESPRI project, in view of starting its scientific programme.
Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 ms, which corresponds to a separation between the two components at the time of the observations of 18 $pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record pairs of spectra rotated by 180 degrees, thus reducing systematic effects. We compute and provide the function expressing the shift of the centroid of a seeing-limited image in the presence of a narrow slit.The proposed technique is simple to use and our test shows that it is amenable for deriving astrometry with milli-arcsecond accuracy or better, beyond the diffraction limit of the telescope. The technique can be further improved by using simple devices to simultaneously record the spectra with 180 degrees angles.With tachoastrometry, radial velocities and astrometric positions can be measured simultaneously for many double line system binaries in an easy way. The method is not limited to binary stars, but can be applied to any astrophysical configuration in which spectral lines are generated by separate (non-rotational symmetric) regions.
Astrometric detection and mass determination of Earth-mass exoplanets requires sub-microarcsec accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must however overc ome astrometric distortions which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the stars immediate surrounding. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars, and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 sq.deg field we adopt as a baseline design achieves 0.2 microarcsec single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-microarcsec astrometry without relying on the accurate pointing, external metrology or high stability hardware required with previously proposed high precision astrometry concepts.
Asteroid detections in astronomical images may appear as trails due to a combination of their apparent rate of motion and exposure duration. Nearby asteroids in particular typically have high apparent rates of motion and acceleration. Their recovery, especially on their discovery apparition, depends upon obtaining good astrometry from the trailed detections. We present an analytic function describing a trailed detection under the assumption of a Gaussian point spread function (PSF) and constant rate of motion. We have fit the function to both synthetic and real trailed asteroid detections from the Pan-STARRS1 survey telescope to obtain accurate astrometry and photometry. For short trails our trailing function yields the same astrometric and photometry accuracy as a functionally simpler 2-d Gaussian but the latter underestimates the length of the trail - a parameter that can be important for measuring the objects rate of motion and assessing its cometary activity. For trails longer than about 10 pixels (> 3xPSF) our trail fitting provides 3-times better astrometric accuracy and up to 2 magnitudes improvement in the photometry. The trail fitting algorithm can be implemented at the source detection level for all detections to provide trail length and position angle that can be used to reduce the false tracklet rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا