ﻻ يوجد ملخص باللغة العربية
Cosmological transverse momentum fields, whose directions are perpendicular to Fourier wave vectors, induce temperature anisotropies in the cosmic microwave background via the kinetic Sunyaev-Zeldovich (kSZ) effect. The transverse momentum power spectrum contains the four-point function of density and velocity fields, $langledeltadelta v vrangle$. In the post-reionization epoch, nonlinear effects dominate in the power spectrum. We use perturbation theory and cosmological $N$-body simulations to calculate this nonlinearity. We derive the next-to-leading order expression for the power spectrum with a particular emphasis on the connected term that has been ignored in the literature. While the contribution from the connected term on small scales ($k>0.1,h,rm{Mpc}^{-1}$) is subdominant relative to the unconnected term, we find that its contribution to the kSZ power spectrum at $ell = 3000$ at $z<6$ can be as large as ten percent of the unconnected term, which would reduce the allowed contribution from the reionization epoch ($z>6$) by twenty percent. The power spectrum of transverse momentum on large scales is expected to scale as $k^2$ as a consequence of momentum conservation. We show that both the leading and the next-to-leading order terms satisfy this scaling. In particular, we find that both of the unconnected and connected terms are necessary to reproduce $k^2$.
We study the effects of two popular modified gravity theories, which incorporate very different screening mechanisms, on the angular power spectra of the thermal (tSZ) and kinematic (kSZ) components of the Sunyaev-Zeldovich effect. Using the first co
We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one o
We report the direct detection of the kinetic Sunyaev-Zeldovich (kSZ) effect in galaxy clusters with a 3.5 sigma significance level. The measurement was performed by stacking the Planck map at 217 GHz at the positions of galaxy clusters from the Wen-
Thermal Sunyaev-Zeldovich (tSZ) effect and X-ray emission from galaxy clusters have been extensively used to constrain cosmological parameters. These constraints are highly sensitive to the relations between cluster masses and observables (tSZ and X-
We propose a new method to determine the electron velocity (EV) distribution function in the intracluster gas (ICG) in clusters of galaxies based on the frequency dependence of the Sunyaev-Zeldovich (SZ) effect. It is generally accepted that the rela