ﻻ يوجد ملخص باللغة العربية
Motivated by recent progress in epitaxial growth of proximity structures of s-wave superconductors (S) and spin-active materials (M), we show that the periodic structure of S and M can behave effectively as a superconductor with pairs of point nodes, near which the low energy excitations are Weyl fermions. A simple toy model, where M is described by a Kronig-Penney potential with both spin-orbit coupling and exchange field, is proposed and solved to obtain the phase diagram of the nodal structure, the spin texture of the Weyl fermions, as well as the zero energy surface states in the form of open Fermi lines (Fermi arcs). Going beyond the simple model, a lattice model with alternating layers of S and magnetic $Z_2$ topological insulators (M) is solved. The calculated spectrum confirms previous prediction of Weyl nodes based on tunneling Hamiltonian of Dirac electrons. Our results provide further evidence that periodic structures of S and M are well suited for engineering gapless topological superconductors.
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a non-linear effect and usually requires a large voltage. Here we study the electron cooling in hete
We consider mesoscopic four-terminal Josephson junctions and study emergent topological properties of the Andreev subgap bands. We use symmetry-constrained analysis for Wigner-Dyson classes of scattering matrices to derive band dispersions. When scat
We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the top
The quest to create superconductors with higher transition temperatures is as old as superconductivity itself. One strategy, popular after the realization that (conventional) superconductivity is mediated by phonons, is to chemically combine differen
Generic chiral superconductors with three-dimensional electronic structure have nodal gaps and are not strictly topological. Nevertheless, they exhibit a spontaneous thermal Hall effect (THE), i.e. a transverse temperature gradient in response to a h