ﻻ يوجد ملخص باللغة العربية
We provide software with a graphical user interface to calculate the phenomenology of a wide class of dark energy models featuring multiple scalar fields. The user chooses a subclass of models and, if desired, initial conditions, or else a range of initial parameters for Monte Carlo. The code calculates the energy density of components in the universe, the equation of state of dark energy, and the linear growth of density perturbations, all as a function of redshift and scale factor. The output also includes an approximate conversion into the average equation of state, as well as the common $(w_0, w_a)$ parametrization. The code is available here: http://github.com/kahinton/Dark-Energy-UI-and-MC
Model independent reconstructions of dark energy have received some attention. The approach that addresses the reconstruction of the dimensionless coordinate distance and its two first derivatives using a polynomial fit in different redshift windows
So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energ
When implementing functionality which requires sparse matrices, there are numerous storage formats to choose from, each with advantages and disadvantages. To achieve good performance, several formats may need to be used in one program, requiring expl
When using large-batch training to speed up stochastic gradient descent, learning rates must adapt to new batch sizes in order to maximize speed-ups and preserve model quality. Re-tuning learning rates is resource intensive, while fixed scaling rules
The braneworld model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch $(epsilon =+1)$. For the negative branch $(epsilon =-1)$ we have i