ﻻ يوجد ملخص باللغة العربية
Urban theorists, social reformists and philosophers have considered the city as a living organism since Plato. However, despite extraordinary advancements in evolutionary biology, now being used to explain social and cultural phenomena, a proper science of evolution in cities has never been established since Geddes work at the dawn of the Town Planning discipline. Commencing in the tradition of Urban Morphology, this research develops and validates a statistically reliable and universally applicable urban taxonomy. The research solidifies existing definitions of built form at the scale of the urban fabric and identifies the constituent elements of form in 40 contemporary UK cities. Quantifiable measurements of these elements allow mathematical descriptions of their organization and mutual relationships. Further, an optimized list of indices with maximum discriminatory potential distinguishes between cases from four historically characterised categories: 1) Historical, 2) Industrial, 3) New Towns, 4) Sprawl. Finally, a dendrogram is produced that shows the tree of similarity between cases, where the great divide between pre and post WWII war urban form is demonstrated. This work shows that: a) it is conceptually sound and viable to measure urban fabric utilizing public, big-data repositories, b) the proposed urban morphometrics system accurately characterises the structure of urban form and clusters cases properly based on their historical origins, c) scientific models of biological evolution can be applied to urban analysis to understand underlying structural similarities.
We propose hypotheses describing the empirical finding of an association between the exponents of urban GDP scaling and Zipfs law for cities. These hypotheses represent various combinations of directional or reciprocal causal links between the two ph
The advent of shared-economy and smartphones made on-demand transportation services possible, which created additional opportunities, but also more complexity to urban mobility. Companies that offer these services are called Transportation Network Co
The identification of urban mobility patterns is very important for predicting and controlling spatial events. In this study, we analyzed millions of geographical check-ins crawled from a leading Chinese location-based social networking service (Jiep
Assessing the resilience of a road network is instrumental to improve existing infrastructures and design new ones. Here we apply the optimal path crack model (OPC) to investigate the mobility of road networks and propose a new proxy for resilience o
Cycling is a promising solution to unsustainable car-centric urban transport systems. However, prevailing bicycle network development follows a slow and piecewise process, without taking into account the structural complexity of transportation networ