Analytification and Tropicalization over non-archimedean fields


الملخص بالإنكليزية

This paper provides an overview of recent progress on the interplay between tropical geometry and non-archimedean analytic geometry in the sense of Berkovich. After briefly discussing results by Baker, Payne and Rabinoff in the case of curves, we explain a result by Cueto, Habich and the author comparing the tropical Grassmannian of planes to the analytic Grassmannian. We also give an overview of the general higher-dimensional theory developed by Gubler, Rabinoff and the author. In particular, we explain the construction of generalized skeleta in which are polyhedral substructures of Berkovich spaces lending themselves to comparison with tropicalizations. We discuss the slope formula for the valuation of rational functions and explain two results on the comparison between polyhedral substructures of Berkovich spaces and tropicalizations.

تحميل البحث