ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogonal Matching Pursuit under the Restricted Isometry Property

125   0   0.0 ( 0 )
 نشر من قبل Wolfgang Dahmen
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with the performance of Orthogonal Matching Pursuit (OMP) algorithms applied to a dictionary $mathcal{D}$ in a Hilbert space $mathcal{H}$. Given an element $fin mathcal{H}$, OMP generates a sequence of approximations $f_n$, $n=1,2,dots$, each of which is a linear combination of $n$ dictionary elements chosen by a greedy criterion. It is studied whether the approximations $f_n$ are in some sense comparable to {em best $n$ term approximation} from the dictionary. One important result related to this question is a theorem of Zhang cite{TZ} in the context of sparse recovery of finite dimensional signals. This theorem shows that OMP exactly recovers $n$-sparse signal, whenever the dictionary $mathcal{D}$ satisfies a Restricted Isometry Property (RIP) of order $An$ for some constant $A$, and that the procedure is also stable in $ell^2$ under measurement noise. The main contribution of the present paper is to give a structurally simpler proof of Zhangs theorem, formulated in the general context of $n$ term approximation from a dictionary in arbitrary Hilbert spaces $mathcal{H}$. Namely, it is shown that OMP generates near best $n$ term approximations under a similar RIP condition.



قيم البحث

اقرأ أيضاً

Matrices satisfying the Restricted Isometry Property (RIP) play an important role in the areas of compressed sensing and statistical learning. RIP matrices with optimal parameters are mainly obtained via probabilistic arguments, as explicit construct ions seem hard. It is therefore interesting to ask whether a fixed matrix can be incorporated into a construction of restricted isometries. In this paper, we construct a new broad ensemble of random matrices with dependent entries that satisfy the restricted isometry property. Our construction starts with a fixed (deterministic) matrix $X$ satisfying some simple stable rank condition, and we show that the matrix $XR$, where $R$ is a random matrix drawn from various popular probabilistic models (including, subgaussian, sparse, low-randomness, satisfying convex concentration property), satisfies the RIP with high probability. These theorems have various applications in signal recovery, random matrix theory, dimensionality reduction, etc. Additionally, motivated by an application for understanding the effectiveness of word vector embeddings popular in natural language processing and machine learning applications, we investigate the RIP of the matrix $XR^{(l)}$ where $R^{(l)}$ is formed by taking all possible (disregarding order) $l$-way entrywise products of the columns of a random matrix $R$.
203 - Simone Brugiapaglia 2018
We propose a compressive spectral collocation method for the numerical approximation of Partial Differential Equations (PDEs). The approach is based on a spectral Sturm-Liouville approximation of the solution and on the collocation of the PDE in stro ng form at randomized points, by taking advantage of the compressive sensing principle. The proposed approach makes use of a number of collocation points substantially less than the number of basis functions when the solution to recover is sparse or compressible. Focusing on the case of the diffusion equation, we prove that, under suitable assumptions on the diffusion coefficient, the matrix associated with the compressive spectral collocation approach satisfies the restricted isometry property of compressive sensing with high probability. Moreover, we demonstrate the ability of the proposed method to reduce the computational cost associated with the corresponding full spectral collocation approach while preserving good accuracy through numerical illustrations.
We show the potential of greedy recovery strategies for the sparse approximation of multivariate functions from a small dataset of pointwise evaluations by considering an extension of the orthogonal matching pursuit to the setting of weighted sparsit y. The proposed recovery strategy is based on a formal derivation of the greedy index selection rule. Numerical experiments show that the proposed weighted orthogonal matching pursuit algorithm is able to reach accuracy levels similar to those of weighted $ell^1$ minimization programs while considerably improving the computational efficiency for small values of the sparsity level.
155 - Yun-Bin Zhao , Zhi-Quan Luo 2021
Orthogonal matching pursuit (OMP) is one of the mainstream algorithms for signal reconstruction/approximation. It plays a vital role in the development of compressed sensing theory, and it also acts as a driving force for the development of other heu ristic methods for signal reconstruction. In this paper, we propose the so-called dynamic orthogonal matching pursuit (DOMP) and its two enhanc
123 - Akshay Soni , Yashar Mehdad 2017
The multilabel learning problem with large number of labels, features, and data-points has generated a tremendous interest recently. A recurring theme of these problems is that only a few labels are active in any given datapoint as compared to the to tal number of labels. However, only a small number of existing work take direct advantage of this inherent extreme sparsity in the label space. By the virtue of Restricted Isometry Property (RIP), satisfied by many random ensembles, we propose a novel procedure for multilabel learning known as RIPML. During the training phase, in RIPML, labels are projected onto a random low-dimensional subspace followed by solving a least-square problem in this subspace. Inference is done by a k-nearest neighbor (kNN) based approach. We demonstrate the effectiveness of RIPML by conducting extensive simulations and comparing results with the state-of-the-art linear dimensionality reduction based approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا