ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase separation from electron confinement at oxide interfaces

384   0   0.0 ( 0 )
 نشر من قبل Marco Grilli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oxide heterostructures are of great interest both for fundamental and applicative reasons. In particular the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ or LaTiO$_3$/SrTiO$_3$ interfaces displays many different physical properties and functionalities. However there are clear indications that the interface electronic state is strongly inhomogeneous and therefore it is crucially relevant to investigate possible intrinsic electronic mechanisms underlying this inhomogeneity. Here the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that the electron confinement at the interface may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a generic robust and intrinsic mechanism for the experimentally observed inhomogeneous character of these interfaces.



قيم البحث

اقرأ أيضاً

LaAlO3/SrTiO3 ad LaTiO3/SrTiO3 interfaces are known to host a strongly inhomogeneous (nearly) two-dimensional electron gas (2DEG). In this work we present three unconventional electronic mechanisms of electronic phase separation (EPS) in a 2DEG as a possible source of inhomogeneity in oxide interfaces. Common to all three mechanisms is the dependence of some (interaction) potential on the 2DEGs density. We first consider a mechanism resulting from a sizable density-dependent Rashba spin-orbit coupling. Next, we point out that an EPS may also occur in the case of a density-dependent superconducting pairing interaction. Finally, we show that the confinement of the 2DEG to the interface by a density-dependent, self-consistent electrostatic potential can by itself cause an EPS.
Geometric phases in condensed matter play a central role in topological transport phenomena such as the quantum, spin and anomalous Hall effect (AHE). In contrast to the quantum Hall effect - which is characterized by a topological invariant and robu st against perturbations - the AHE depends on the Berry curvature of occupied bands at the Fermi level and is therefore highly sensitive to subtle changes in the band structure. A unique platform for its manipulation is provided by transition metal oxide heterostructures, where engineering of emergent electrodynamics becomes possible at atomically sharp interfaces. We demonstrate that the Berry curvature and its corresponding vector potential can be manipulated by interface engineering of the correlated itinerant ferromagnet SrRuO$_3$ (SRO). Measurements of the AHE reveal the presence of two interface-tunable spin-polarized conduction channels. Using theoretical calculations, we show that the tunability of the AHE at SRO interfaces arises from the competition between two topologically non-trivial bands. Our results demonstrate how reconstructions at oxide interfaces can be used to control emergent electrodynamics on a nanometer-scale, opening new routes towards spintronics and topological electronics.
We propose a model for the two-dimensional electron gas formed at the interface of oxide heterostructures that includes a Rashba spin-orbit coupling proportional to an electric field oriented perpendicularly to the interface. Taking into account the electron density dependence of this electric field confining the electron gas at the interface, we report the occurrence of a phase separation instability (signaled by a negative compressibility) for realistic values of the spin-orbit coupling and of the electronic band-structure parameters at zero temperature. We extend the analysis to finite temperatures and in the presence of an in-plane magnetic field, thereby obtaining two phase diagrams which exhibit a phase separation dome. By varying the gating potential the phase separation dome may shrink and vanish at zero temperature into a quantum critical point where the charge fluctuates dynamically. Similarly the phase separation may be spoiled by a planar magnetic field even at zero temperature leading to a line of quantum critical points.
An asymmetric triangular potential well provides the simplest model for the confinement of mobile electrons at the interface between two insulating oxides, such as LaAlO_3 and SrTiO_3 (LAO/STO). These electrons have been recently shown to exhibit a l arge spin-orbit coupling of the Rashba type, i.e., linear in the in-plane momentum. In this paper we study the intrinsic spin Hall effect due to Rashba coupling in an asymmetric triangular potential well. Besides splitting each subband into two branches of opposite helicity, the spin-orbit interaction causes the wave function in the direction perpendicular to the plane of the quantum well (the z direction) to depend on the in-plane wave vector k. In contrast to the extreme asymmetric case, i.e., the wedge-shaped quantum well, for which the intrinsic spin Hall effect vanishes due to vertex corrections, we find that the asymmetric well supports a non-vanishing intrinsic spin Hall conductivity, which increases in magnitude as the well becomes more symmetric. The spin Hall conductivity is found to be proportional to the square of the spin-orbit coupling constant and, in the limit of low carrier density, depends only on the effective mass renormalization associated with the k-dependence of the wave functions in the z direction. Its origin lies in the non-vanishing matrix elements of the spin current between subbands corresponding to different states of quantized motion perpendicular to the plane of the well.
We develop a robust and versatile platform to define nanostructures at oxide interfaces via patterned top gates. Using LaAlO$_3$/SrTiO$_3$ as a model system, we demonstrate controllable electrostatic confinement of electrons to nanoscale regions in t he conducting interface. The excellent gate response, ultra-low leakage currents, and long term stability of these gates allow us to perform a variety of studies in different device geometries from room temperature down to 50 mK. Using a split-gate device we demonstrate the formation of a narrow conducting channel whose width can be controllably reduced via the application of appropriate gate voltages. We also show that a single narrow gate can be used to induce locally a superconducting to insulating transition. Furthermore, in the superconducting regime we see indications of a gate-voltage controlled Josephson effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا