ﻻ يوجد ملخص باللغة العربية
We consider the problem of optimal recovery of an element $u$ of a Hilbert space $mathcal{H}$ from $m$ measurements obtained through known linear functionals on $mathcal{H}$. Problems of this type are well studied cite{MRW} under an assumption that $u$ belongs to a prescribed model class, e.g. a known compact subset of $mathcal{H}$. Motivated by reduced modeling for parametric partial differential equations, this paper considers another setting where the additional information about $u$ is in the form of how well $u$ can be approximated by a certain known subspace $V_n$ of $mathcal{H}$ of dimension $n$, or more generally, how well $u$ can be approximated by each $k$-dimensional subspace $V_k$ of a sequence of nested subspaces $V_0subset V_1cdotssubset V_n$. A recovery algorithm for the one-space formulation, proposed in cite{MPPY}, is proven here to be optimal and to have a simple formulation, if certain favorable bases are chosen to represent $V_n$ and the measurements. The major contribution of the present paper is to analyze the multi-space case for which it is shown that the set of all $u$ satisfying the given information can be described as the intersection of a family of known ellipsoids in $mathcal{H}$. It follows that a near optimal recovery algorithm in the multi-space problem is to identify any point in this intersection which can provide a much better accuracy than in the one-space problem. Two iterative algorithms based on alternating projections are proposed for recovery in the multi-space problem. A detailed analysis of one of them provides a posteriori performance estimates for the iterates, stopping criteria, and convergence rates. Since the limit of the algorithm is a point in the intersection of the aforementioned ellipsoids, it provides a near optimal recovery for $u$.
This paper studies the problem of approximating a function $f$ in a Banach space $X$ from measurements $l_j(f)$, $j=1,dots,m$, where the $l_j$ are linear functionals from $X^*$. Most results study this problem for classical Banach spaces $X$ such as
This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consider
Recent studies have demonstrated improved skill in numerical weather prediction via the use of spatially correlated observation error covariance information in data assimilation systems. In this case, the observation weighting matrices (inverse error
Reduced model spaces, such as reduced basis and polynomial chaos, are linear spaces $V_n$ of finite dimension $n$ which are designed for the efficient approximation of families parametrized PDEs in a Hilbert space $V$. The manifold $mathcal{M}$ that
We consider the problem of estimating the density of buyers and vendors in a nonlinear parabolic price formation model using measurements of the price and the transaction rate. Our approach is based on a work by Puel et al., see cite{Puel2002}, and r