ﻻ يوجد ملخص باللغة العربية
Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
ZnO microspheres fabricated via laser ablation in superfluid helium were found to have bubble-like voids. Even a microsphere demonstrating clear whispering gallery mode resonances in the luminescence had voids. Our analysis confirmed that the voids a
We explore a method for laser cooling and optical detection of excitations in a LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with th
Laser-assisted electron scattering (LAES), a light-matter interaction process that facilitates energy transfer between strong light fields and free electrons, has so far been observed only in gas phase. Here we report on the observation of LAES at co
Cooling down a trapped ion into its motional ground state is a central step for trapped ions based quantum information processing. State of the art cooling schemes often work under a set of optimal cooling conditions derived analytically using a pert
Optical tweezers, the three-dimensional confinement of a nanoparticle by a strongly focused beam of light, have been widely employed in investigating biomaterial nanomechanics, nanoscopic fluid properties, and ultrasensitive detections in various env