ﻻ يوجد ملخص باللغة العربية
In $e$-beam evaporated amorphous silicon ($a$-Si), the densities of two-level systems (TLS), $n_{0}$ and $overline{P}$, determined from specific heat $C$ and internal friction $Q^{-1}$ measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that $n_{0}$ and $overline{P}$ are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, $n_{0}$ and $overline{P}$ depend strongly on the atomic density of the film ($n_{rm Si}$) which depends on both film thickness and growth temperature suggesting that the $a$-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to $a$-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form.
Numerical studies of amorphous silicon in harmonic approximation show that the highest 3.5% of vibrational normal modes are localized. As vibrational frequency increases through the boundary separating localized from delocalized modes, near omega_c=7
Specific heat measurements from 2 to 300 K of hydrogenated amorphous silicon prepared by hot-wire chemical vapor deposition show a large excess specific heat at low temperature, significantly larger than the Debye specific heat calculated from the so
Specific heat measurements of hydrogenated amorphous silicon prepared by hot-wire chemical vapor deposition show a large density of two-level systems at low temperature. Annealing at 200 {deg}C, well below the growth temperature, does not significant
Amorphous silicon contains tunneling two-level systems, which are the dominant energy loss mechanisms for amorphous solids at low temperatures. These two-level systems affect both mechanical and electromagnetic oscillators and are believed to produce
We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector ${bf q}$. For this purpose we define the transverse component