ترغب بنشر مسار تعليمي؟ اضغط هنا

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences

141   0   0.0 ( 0 )
 نشر من قبل Hongyuan Mei
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a neural sequence-to-sequence model for direction following, a task that is essential to realizing effective autonomous agents. Our alignment-based encoder-decoder model with long short-term memory recurrent neural networks (LSTM-RNN) translates natural language instructions to action sequences based upon a representation of the observable world state. We introduce a multi-level aligner that empowers our model to focus on sentence regions salient to the current world state by using multiple abstractions of the input sentence. In contrast to existing methods, our model uses no specialized linguistic resources (e.g., parsers) or task-specific annotations (e.g., seed lexicons). It is therefore generalizable, yet still achieves the best results reported to-date on a benchmark single-sentence dataset and competitive results for the limited-training multi-sentence setting. We analyze our model through a series of ablations that elucidate the contributions of the primary components of our model.



قيم البحث

اقرأ أيضاً

62 - Yang Li , Jiacong He , Xin Zhou 2020
We present a new problem: grounding natural language instructions to mobile user interface actions, and create three new datasets for it. For full task evaluation, we create PIXELHELP, a corpus that pairs English instructions with actions performed b y people on a mobile UI emulator. To scale training, we decouple the language and action data by (a) annotating action phrase spans in HowTo instructions and (b) synthesizing grounded descriptions of actions for mobile user interfaces. We use a Transformer to extract action phrase tuples from long-range natural language instructions. A grounding Transformer then contextually represents UI objects using both their content and screen position and connects them to object descriptions. Given a starting screen and instruction, our model achieves 70.59% accuracy on predicting complete ground-truth action sequences in PIXELHELP.
Training models to map natural language instructions to programs given target world supervision only requires searching for good programs at training time. Search is commonly done using beam search in the space of partial programs or program trees, b ut as the length of the instructions grows finding a good program becomes difficult. In this work, we propose a search algorithm that uses the target world state, known at training time, to train a critic network that predicts the expected reward of every search state. We then score search states on the beam by interpolating their expected reward with the likelihood of programs represented by the search state. Moreover, we search not in the space of programs but in a more compressed state of program executions, augmented with recent entities and actions. On the SCONE dataset, we show that our algorithm dramatically improves performance on all three domains compared to standard beam search and other baselines.
98 - Roger Hsiao , Dogan Can , Tim Ng 2020
The Listen, Attend and Spell (LAS) model and other attention-based automatic speech recognition (ASR) models have known limitations when operated in a fully online mode. In this paper, we analyze the online operation of LAS models to demonstrate that these limitations stem from the handling of silence regions and the reliability of online attention mechanism at the edge of input buffers. We propose a novel and simple technique that can achieve fully online recognition while meeting accuracy and latency targets. For the Mandarin dictation task, our proposed approach can achieve a character error rate in online operation that is within 4% relative to an offline LAS model. The proposed online LAS model operates at 12% lower latency relative to a conventional neural network hidden Markov model hybrid of comparable accuracy. We have validated the proposed method through a production scale deployment, which, to the best of our knowledge, is the first such deployment of a fully online LAS model.
Ironies can not only express stronger emotions but also show a sense of humor. With the development of social media, ironies are widely used in public. Although many prior research studies have been conducted in irony detection, few studies focus on irony generation. The main challenges for irony generation are the lack of large-scale irony dataset and difficulties in modeling the ironic pattern. In this work, we first systematically define irony generation based on style transfer task. To address the lack of data, we make use of twitter and build a large-scale dataset. We also design a combination of rewards for reinforcement learning to control the generation of ironic sentences. Experimental results demonstrate the effectiveness of our model in terms of irony accuracy, sentiment preservation, and content preservation.
Neuroevolution is a process of training neural networks (NN) through an evolutionary algorithm, usually to serve as a state-to-action mapping model in control or reinforcement learning-type problems. This paper builds on the Neuro Evolution of Augmen ted Topologies (NEAT) formalism that allows designing topology and weight evolving NNs. Fundamental advancements are made to the neuroevolution process to address premature stagnation and convergence issues, central among which is the incorporation of automated mechanisms to control the population diversity and average fitness improvement within the neuroevolution process. Insights into the performance and efficiency of the new algorithm is obtained by evaluating it on three benchmark problems from the Open AI platform and an Unmanned Aerial Vehicle (UAV) collision avoidance problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا