ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast broadband tuning of resonant optical nanostructures using phase change materials

197   0   0.0 ( 0 )
 نشر من قبل Miquel Rud\\'e Moreno
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The functionalities of a wide range of optical and opto-electronic devices are based on resonance effects and active tuning of the amplitude and wavelength response is often essential. Plasmonic nanostructures are an efficient way to create optical resonances, a prominent example is the extraordinary optical transmission (EOT) through arrays of nanoholes patterned in a metallic film. Tuning of resonances by heating, applying electrical or optical signals has proven to be more elusive, due to the lack of materials that can induce modulation over a broad spectral range and/or at high speeds. Here we show that nanopatterned metals combined with phase change materials (PCMs) can overcome this limitation due to the large change in optical constants which can be induced thermally or on an ultrafast timescale. We demonstrate resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - by combining properly designed Au EOT nanostructures with Ge2Sb2Te5 (GST). Moreover, we show, through pump probe measurements, repeatable and reversible, large amplitude modulations in the resonances, especially at telecommunication wavelengths, over ps time scales and at powers far below those needed to produce a permanent phase transition. Our findings open a pathway to the design of hybrid metal PCM nanostructures with ultrafast and widely tuneable resonance responses, which hold potential impact on active nanophotonic devices such as tuneable optical filters, smart windows, biosensors and reconfigurable memories.



قيم البحث

اقرأ أيضاً

We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both fs pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21050 cm$^{-1}$. A b road pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than $Delta$R= 0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a 3D Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.
Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation, and wide-gamut color printing applications. Despite recent advances, most demonstrations of these structure-dependent colors lack post-fabrication tunability. This hinders their applicability for front-end dynamic display technologies. Phase-change materials (PCMs), with significant contrast of their optical properties between their amorphous and crystalline states, have demonstrated promising potentials in reconfigurable nanophotonics. Herein, we leverage tunable all-dielectric reflective metasurfaces made of newly emerged classes of low-loss optical PCMs, i.e., antimony trisulphide (Sb$_2$S$_3$) and antimony triselenide (Sb$_2$Se$_3$), with superb characteristics to realize switchable, high-saturation, high-efficiency and high-resolution dynamic meta-pixels. Exploiting polarization-sensitive building blocks, the presented meta-pixel can generate two different colors when illuminated by either one of two orthogonally polarized incident beams. Such degrees of freedom (i.e., material phase and polarization state) enable a single reconfigurable metasurface with fixed geometrical parameters to generate four distinct wide-gamut colors. We experimentally demonstrate, for the first time, an electrically-driven micro-scale display through the integration of phase-change metasurfaces with an on-chip heater formed by transparent conductive oxide. Our experimental findings enable a versatile platform suitable for a wide range of applications, including tunable full-color printing, enhanced dynamic displays, information encryption, and anti-counterfeiting.
Metasurfaces offer the potential to control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. Existing metasurfaces frequently utilize metallic polaritonic elements with high absorption losses, an d/or fixed geometrical designs that serve a single function. Here we overcome these limitations by demonstrating a reconfigurable hyperbolic metasurface comprising of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) vanadium dioxide (VO2). Spatially localized metallic and dielectric domains in VO2 change the wavelength of the hyperbolic phonon polaritons (HPhPs) supported in hBN by a factor 1.6 at 1450cm-1. This induces in-plane launching, refraction and reflection of HPhPs in the hBN, proving reconfigurable control of in-plane HPhP propagation at the nanoscale15. These results exemplify a generalizable framework based on combining hyperbolic media and PCMs in order to design optical functionalities such as resonant cavities, beam steering, waveguiding and focusing with nanometric control.
130 - Yifei Zhang 2018
Optical phase change materials (O-PCMs), a unique group of materials featuring drastic optical property contrast upon solid-state phase transition, have found widespread adoption in photonic switches and routers, reconfigurable meta-optics, reflectiv e display, and optical neuromorphic computers. Current phase change materials, such as Ge-Sb-Te (GST), exhibit large contrast of both refractive index (delta n) and optical loss (delta k), simultaneously. The coupling of both optical properties fundamentally limits the function and performance of many potential applications. In this article, we introduce a new class of O-PCMs, Ge-Sb-Se-Te (GSST) which breaks this traditional coupling, as demonstrated with an optical figure of merit improvement of more than two orders of magnitude. The first-principle computationally optimized alloy, Ge2Sb2Se4Te1, combines broadband low optical loss (1-18.5 micron), large optical contrast (delta n = 2.0), and significantly improved glass forming ability, enabling an entirely new field of infrared and thermal photonic devices. We further leverage the material to demonstrate nonvolatile integrated optical switches with record low loss and large contrast ratio, as well as an electrically addressed, microsecond switched pixel level spatial light modulator, thereby validating its promise as a platform material for scalable nonvolatile photonics.
Plasmonic sensing is an established technology for real-time biomedical diagnostics and air-quality monitoring. While intensity and wavelength tracking are the most commonly used interrogation methods for Surface Plasmon Resonance (SPR), several work s indicate the potential superiority of phase interrogation in detection sensitivity. Here, we theoretically and numerically establish the link between ultra-high sensitivities in phase interrogation SPR sensors and the critical coupling condition. However, reaching this condition requires a technically infeasible angstrom-level precision in the metal layer thickness. We propose a robust solution to overcome this limitation by coupling the SPR with a phase-change material (PCM) thin film. By exploiting the multilevel reconfigurable phase states of PCM, we theoretically demonstrate ultra-high phase sensitivities with a limit of detection as low as $10^{-10}$ refractive index unit (RIU). Such a PCM-assisted SPR sensor platform paves the way for unprecedented sensitivity sensors for the detection of trace amounts of low molecular weight species in biomedical sensing and environmental monitoring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا