ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving Protoplanetary Disks at Millimeter Wavelengths by CARMA

218   0   0.0 ( 0 )
 نشر من قبل Woojin Kwon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Woojin Kwon




اسأل ChatGPT حول البحث

We present continuum observations at 1.3 and 2.7 mm using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) toward six protoplanetary disks in the Taurus molecular cloud: CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau. We constrain physical properties of the disks with Bayesian inference using two disk models; flared power-law disk model and flared accretion disk model. Comparing the physical properties, we find that the more extended disks are less flared and that the dust opacity spectral index (beta) is smaller in the less massive disks. In addition, disks with a steeper mid-plane density gradient have a smaller beta, which suggests that grains grow and radially move. Furthermore, we compare the two disk models quantitatively and find that the accretion disk model provides a better fit overall. We also discuss the possibilities of substructures on three extended protoplanetary disks.



قيم البحث

اقرأ أيضاً

We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have obtained 1.3 and 2.7 mm dust continua with an angular resolution down to 0.13 arc second. Through model fitti ng to the two wavelength data simultaneously in Bayesian inference using a flared viscous accretion disk model, we estimate the physical properties of HL Tau, such as density distribution, dust opacity spectral index, disk mass, disk size, inclination angle, position angle, and disk thickness. HL Tau has a circumstellar disk mass of 0.13 solar mass, a characteristic radius of 79 AU, an inclination of 40 degree, and a position angle of 136 degree. Although a thin disk model is preferred by our two wavelength data, a thick disk model is needed to explain the high mid- and far-infrared emission of the HL Tau spectral energy distribution. This could imply large dust grains settled down on the mid plane with fine dust grains mixed with gas. The HL Tau disk is likely gravitationally unstable and can be fragmented between 50 and 100 AU of radius. However, we did not detect dust thermal continuum supporting the protoplanet candidate claimed by a previous study using observations of the Very Large Array at 1.3 cm.
Aims: The aim of this paper is to demonstrate that millimeter wave data can be used to distinguish between various atmospheric models of sunspots, whose temperature structure in the upper photosphere and chromosphere has been the source of some contr oversy. Methods: We use observations of the temperature contrast (relative to the quiet Sun) above a sunspot umbra at 3.5 mm obtained with the Berkeley-Illinois-Maryland Array (BIMA), complemented by submm observations from Lindsey & Kopp (1995) and 2 cm observations with the Very Large Array. These are compared with the umbral contrast calculated from various atmospheric models of sunspots. Results: Current mm and submm observational data suggest that the brightness observed at these wavelengths is low compared to the most widely used sunspot models. These data impose strong constraints on the temperature and density stratifications of the sunspot umbral atmosphere, in particular on the location and depth of the temperature minimum and the location of the transition region. Conclusions: A successful model that is in agreement with millimeter umbral brightness should have an extended and deep temperature minimum (below 3000 K). Better spatial resolution as well as better wavelength coverage are needed for a more complete determination of the chromospheric temperature stratification above sunspot umbrae.
Semi-empirical models of the solar Chromosphere show in their emission spectrum, tomography property at millimeter, sub-millimeter, and infrared wavelengths for the center of the solar disk. In this work, we studied this property in the solar limb us ing our numerical code PakalMPI, focusing in the region where the solar atmosphere becomes optically thick. Individual contribution of Bremsstrahlung and H- opacities was take into account in the radiative transfer process. We found that the tomography property remains in all the spectrum region under study at limb altitudes. For frequencies be- tween 2 GHz and 5 THz the contribution of Bremsstrahlung is the dominant process above the solar limb.
73 - D. E. Anderson 2021
Infrared observations probe the warm gas in the inner regions of planet-forming disks around young sun-like, T Tauri stars. In these systems, H$_2$O, OH, CO, CO$_2$, C$_2$H$_2$, and HCN have been widely observed. However, the potentially abundant car bon carrier CH$_4$ remains largely unconstrained. The James Webb Space Telescope (JWST) will be able to characterize mid-infrared fluxes of CH$_4$ along with several other carriers of carbon and oxygen. In anticipation of the JWST mission, we model the physical and chemical structure of a T Tauri disk to predict the abundances and mid-infrared fluxes of observable molecules. A range of compositional scenarios are explored involving the destruction of refractory carbon materials and alterations to the total elemental (volatile and refractory) C/O ratio. Photon-driven chemistry in the inner disk surface layers largely destroys the initial carbon and oxygen carriers. This causes models with the same physical structure and C/O ratio to have similar steady state surface compositions, regardless of the initial chemical abundances. Initial disk compositions are better preserved in the shielded inner disk midplane. The degree of similarity between the surface and midplane compositions in the inner disk will depend on the characteristics of vertical mixing at these radii. Our modeled fluxes of observable molecules respond sensitively to changes in the disk gas temperature, inner radius, and the total elemental C/O ratio. As a result, mid-infrared observations of disks will be useful probes of these fundamental disk parameters, including the C/O ratio, which can be compared to values determined for planetary atmospheres.
Context. Observations at sub-millimeter and mm wavelengths will in the near future be able to resolve the radial dependence of the mm spectral slope in circumstellar disks with a resolution of around a few AU at the distance of the closest star-formi ng regions. Aims. We aim to constrain physical models of grain growth and fragmentation by a large sample of (sub-)mm observations of disks around pre-main sequence stars in the Taurus-Auriga and Ophiuchus star-forming regions. Methods. State-of-the-art coagulation/fragmentation and disk-structure codes are coupled to produce steady-state grain size distributions and to predict the spectral slopes at (sub-)mm wavelengths. Results. This work presents the first calculations predicting the mm spectral slope based on a physical model of grain growth. Our models can quite naturally reproduce the observed mm-slopes, but a simultaneous match to the observed range of flux levels can only be reached by a reduction of the dust mass by a factor of a few up to about 30 while keeping the gas mass of the disk the same. This dust reduction can either be due to radial drift at a reduced rate or during an earlier evolutionary time (otherwise the predicted fluxes would become too low) or due to efficient conversion of dust into larger, unseen bodies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا