ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry of Generalized Randall-Sundrum Model and Distribution of 3-Branes in Six-Dimensional Spacetime

134   0   0.0 ( 0 )
 نشر من قبل Xin Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A generalization from the usual $5$-dimensional two-brane Randall-Sundrum (RS) model to a $6$-dimensional multi-brane RS model is presented. The extra dimensions are extended from one to two; correspondingly the single-variable warp function is generalized to be a double-variable function, to represent the two extra dimensions. In the analysis of the Einstein equation we have two remarkable discoveries. One is that, when branes are absent, the cosmological parameter distributed in the two extra dimensions acts as a function describing a family of circles. These circles are not artificially added ones but stem from the equations of motion, while their radii are inversely proportional to the square root of the cosmological parameter. The other discovery is that, on any circle, there symmetrically distribute four branes. Their tensions, $V_1 sim V_4$, satisfy a particular relationship $V_1=V_3=-V_2=-V_4=3M^4$, where $M$ is the $6$-dimensional fundamental scale of the RS model.



قيم البحث

اقرأ أيضاً

We propose a simple and predictive model of fermion masses and mixing in a warped extra dimension, with the smallest discrete non-Abelian group $S_{3}$ and the discrete symmetries $Z_{2}otimes Z_{4}$. Standard Model fields propagate in the bulk and t he mass hierarchies and mixing angles are accounted for the fermion zero modes localization profiles, similarly to the the Randall-Sundrum (RS) model. To the best of our knowledge, this model is the first implementation of an $S_{3}$ flavor symmetry in this type of warped extra dimension framework. Our model successfully describes the fermion masses and mixing pattern and is consistent with the current low energy fermion flavor data. The discrete flavor symmetry in our model leads to predictive mixing inspired textures, where the Cabbibo mixing arises from the down type quark sector whereas up type quark sector contributes to the remaining mixing angles.
We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckarts theory, we focus in the Randall-Sundrum model with negative tension on the brane.
It has been shown in the last few years that 3-form fields present viable cosmological solutions for inflation and dark energy with particular observable signatures distinct from those of canonical single scalar field inflation. The aim of this work is to explore the dynamics of a single 3-form in five dimensional Randall-Sundrum II braneworld scenario, in which a 3-form is confined to the brane and only gravity propagates in the bulk. We compare the solutions with the standard four dimensional case already studied in the literature. In particular, we evaluate how the spectral index and the ratio of tensor to scalar perturbations are influenced by the presence of the bulk and put constraints on the parameters of the models in the light of the recent Planck 2015 data.
Following Diracs brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying th e bulk coordinate system itself. Imposing appropriate Dirac style boundary conditions on the constrained sandwiched gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the $Z_2$-symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and in the generic $Z_2$-asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from General Relativity.
Randall Sundrum models provide a possible explanation of (gauge-gravity) hierarchy, whereas discrete symmetry flavor groups yield a possible description of the texture of Standard Model fermion masses. We use both these ingredients to propose a five- dimensional extension of the Standard Model where the mass hierarchy of the four-dimensional effective field theory is obtained only using localizations parameters of order 1. We consider a bulk custodial gauge symmetry group together with an Abelian $Z_4$ group: the model turns out to yield a rather minimal extension of the SM as it only requires two brane Higgs fields to provide the desired Yukawa interactions and the required spontaneous symmetry breaking pattern. In fact, the presence of an extra-dimension allows the use of the Scherk-Schwarz mechanism to contribute to the breaking of the bulk custodial group down to the SM gauge symmetry. Moreover, no right-handed neutrinos are present and neutrino masses are generated radiatively with the help of a bulk charged scalar field that provides the Lepton-number violation. Using experimental inputs from the Global Neutrino Analysis and recent Daya Bay results, a numerical analysis is performed and allowed parameter regions are displayed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا