ترغب بنشر مسار تعليمي؟ اضغط هنا

First 230 GHz VLBI Fringes on 3C 279 using the APEX Telescope

135   0   0.0 ( 0 )
 نشر من قبل Jan Florian Wagner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report about a 230 GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). We installed VLBI equipment and measured the APEX station position to 1 cm accuracy (1 sigma). We then observed 3C 279 on 2012 May 7 in a 5 hour 230 GHz VLBI track with baseline lengths of 2800 M$lambda$ to 7200 M$lambda$ and a finest fringe spacing of 28.6 micro-arcseconds. Fringes were detected on all baselines with SNRs of 12 to 55 in 420 s. The correlated flux density on the longest baseline was ~0.3 Jy/beam, out of a total flux density of 19.8 Jy. Visibility data suggest an emission region <38 uas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 10^10 K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ~38 uas. With APEX the angular resolution of 230 GHz VLBI improves to 28.6 uas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40 uas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.



قيم البحث

اقرأ أيضاً

We report the results of a successful 24 hour 6.7 GHz VLBI experiment using the 30 meter radio telescope WARK30M near Warkworth, New Zealand, recently converted from a radio telecommunications antenna, and two radio telescopes located in Australia: H obart 26-m and Ceduna 30-m. The geocentric position of WARK30M is determined with a 100 mm uncertainty for the vertical component and 10 mm for the horizontal components. We report correlated flux densities at 6.7 GHz of 175 radio sources associated with Fermi gamma-ray sources. A parsec scale emission from the radio source 1031-837 is detected, and its association with the gamma-ray object 2FGL J1032.9-8401 is established with a high likelihood ratio. We conclude that the new Pacific area radio telescope WARK30M is ready to operate for scientific projects.
Nearby radio galaxies that contain jets are extensively studied with VLBI, addressing jet launching and the physical mechanisms at play around massive black holes. 3C 84 is unique in this regard, because the combination of its proximity and large SMB H mass provides a high spatial resolution to resolve the complex structure at the jet base. For 3C 84 an angular scale of 50 ${mu}$as corresponds to 200 - 250 Schwarzschild radii ($R_s$). Recent RadioAstron VLBI imaging at 22 GHz revealed an east-west elongated feature at the northern end of the VLBI jet, which challenges interpretations. Here we propose instead that the jet apex is not located within the 22 GHz VLBI core region but more upstream of the jet. We base our arguments on a 2D cross-correlation analysis of quasi-simultaneously obtained VLBI images at 15, 43, and 86 GHz, which measures the opacity shift of the VLBI core in 3C 84. With the assumption of the power law index ($k_r$) of the core shift being set to 1, we find the jet apex to be located $83 pm 7$ ${mu}$as north (upstream) of the 86 GHz VLBI core. Depending on the assumptions for $k_r$ and the particle number density power law index n, we find a mixed toroidal/poloidal magnetic field configuration, consistent with a region which is offset from the central engine by about 400-1500 $R_s$. The measured core shift is then used to estimate the magnetic field strength, which amounts to B = 1.80 - 4.0 G near the 86 GHz VLBI core. We discuss some physical implications of these findings.
Context: We describe the new SEPIA (Swedish-ESO PI Instrument for APEX) receiver, which was designed and built by the Group for Advanced Receiver Development (GARD), at Onsala Space Observatory (OSO) in collaboration with ESO. It was installed and co mmissioned at the APEX telescope during 2015 with an ALMA Band 5 receiver channel and updated with a new frequency channel (ALMA Band 9) in February 2016. Aims: This manuscript aims to provide, for observers who use the SEPIA receiver, a reference in terms of the hardware description, optics and performance as well as the commissioning results. Methods: Out of three available receiver cartridge positions in SEPIA, the two current frequency channels, corresponding to ALMA Band 5, the RF band 158--211 GHz, and Band 9, the RF band 600--722 GHz, provide state-of-the-art dual polarization receivers. The Band 5 frequency channel uses 2SB SIS mixers with an average SSB noise temperature around 45K with IF (intermediate frequency) band 4--8 GHz for each sideband providing total 4x4 GHz IF band. The Band 9 frequency channel uses DSB SIS mixers with a noise temperature of 75--125K with IF band 4--12 GHz for each polarization. Results: Both current SEPIA receiver channels are available to all APEX observers.
138 - D. C. Homan 2009
We report the results of parsec-scale, multi-frequency VLBA observations of the core region of 3C 279 in Stokes I, linear polarization, and circular polarization. These full polarization spectra are modeled by radiative transfer simulations to constr ain the magnetic field and particle properties of the parsec-scale jet in 3C 279. The polarization properties of the core region, including the amount of linear polarization, the amount and sign of Faraday rotation, and the amount and sign of circular polarization can be explained by a consistent physical picture. The base of the jet is modeled as an inhomogeneous Blandford-Konigl style conical jet dominated by a vector-ordered poloidal magnetic field along the jet axis, and we estimate its net magnetic flux. This poloidal field is responsible for the linear and circular polarization from this inhomogeneous component. Farther down the jet the magnetic field in two homogeneous features is dominated by local shocks and a smaller fraction of vector-ordered poloidal field remains along the jet axis. In this picture, we find the jet to be kinetically dominated by protons with the radiating particles being dominated by electrons at an approximate fraction of >~ 75%. Based on the amounts of Faraday conversion deduced for the homogeneous components, we find a plausible range for the lower cutoff in the relativistic particle energy spectrum to be 5 <~ gamma_l <~ 35. The physical picture described here is not unique if the observed Faraday rotation and depolarization occur in screens external to the jet; however, we find the joint explanation of linear and circular polarization observations from a single set of magnetic fields and particle properties internal to the jet to be compelling evidence for this picture. (Abridged)
Quasar 3C 279 is known to exhibit episodes of optical polarization angle rotation. We present new, well-sampled optical polarization data for 3C 279 and introduce a method to distinguish between random and deterministic electric vector position angle (EVPA) variations. We observe EVPA rotations in both directions with different amplitudes and find that the EVPA variation shows characteristics of both random and deterministic cases. Our analysis indicates that the EVPA variation is likely dominated by a random process in the low brightness state of the jet and by a deterministic process in the flaring state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا