ﻻ يوجد ملخص باللغة العربية
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
This paper deals with the study of the two-dimensional Dirac operatorwith infinite mass boundary condition in a sector. We investigate the question ofself-adjointness depending on the aperture of the sector: when the sector is convexit is self-adjoin
We transform the oscillator algebra with kappa-deformed multiplication rule, proposed in [1],[2], into the oscillator algebra with kappa-deformed flip operator and standard multiplication. We recall that the kappa-multiplication of the kappa-oscillat
We present four infinite families of mutually commuting difference operators which include the deformed elliptic Ruijsenaars operators. The trigonometric limit of this kind of operators was previously introduced by Feigin and Silantyev. They provide
The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain
The $(4+4)$-dimensional $kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$ $