ترغب بنشر مسار تعليمي؟ اضغط هنا

From gyroscopic to thermal motion: a crossover in the dynamics of molecular superrotors

498   0   0.0 ( 0 )
 نشر من قبل Valery Milner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Localized heating of a gas by intense laser pulses leads to interesting acoustic, hydrodynamic and optical effects with numerous applications in science and technology, including controlled wave guiding and remote atmosphere sensing. Rotational excitation of molecules can serve as the energy source for raising the gas temperature. Here, we study the dynamics of energy transfer from the molecular rotation to heat. By optically imaging a cloud of molecular superrotors, created with an optical centrifuge, we experimentally identify two separate and qualitatively different stages of its evolution. The first non-equilibrium gyroscopic stage is characterized by the modified optical properties of the centrifuged gas - its refractive index and optical birefringence, owing to the ultrafast directional molecular rotation, which survives tens of collisions. The loss of rotational directionality is found to overlap with the release of rotational energy to heat, which triggers the second stage of thermal expansion. The crossover between anisotropic rotational and isotropic thermal regimes is in agreement with recent theoretical predictions and our hydrodynamic calculations.



قيم البحث

اقرأ أيضاً

We use an optical centrifuge to deposit a controllable amount of rotational energy into dense molecular ensembles. Subsequent rotation-translation energy transfer, mediated by thermal collisions, results in the localized heating of the gas and genera tes strong sound wave, clearly audible to the unaided ear. For the first time, the amplitude of the sound signal is analyzed as a function of the experimentally measured rotational energy. The proportionality between the two experimental observables confirms that rotational excitation is the main source of the detected sound wave. As virtually all molecules, including the main constituents of the atmosphere, are amenable to laser spinning by the centrifuge, we anticipate this work to stimulate further development in the area of photo-acoustic control and spectroscopy.
138 - Chengjie Zhu , Chaohua Tan , 2013
We investigate electromagnetically induced transparency (EIT) and Autler-Townes splitting(ATS) in an open V-type molecular system. Through detailed analytical calculations on the absorption spectrum of probe laser field by using residue theorem and s pectrum decomposition, we find that EIT may occur and there exists a crossover from EIT to ATS (i.e. EIT-ATS crossover) for hot molecules. However, there is no EIT and hence no EIT-ATS crossover for cold molecules. Furthermore, we prove that for hot molecules EIT is allowed even for a counter-propagating configuration. We provide explicit formulas of EIT conditions and widths of EIT transparency windows of probe field when hot molecules work in co-propagating and counter-propagating configurations, respectively. Our theoretical result agrees well with the recent experimental one reported by Lazoudis et al. [Phys. Rev. A 83, 063419 (2011)].
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on th eir historical data. Here we use both the experiments and numerical simulations to demonstrate some generic features of vortex motion and distribution. It can be found that the vortex movement can be described on the framework of Brownian particles where they move ballistically for the time shorter than some critical timescales, and then move diffusively. Traditionally, the inertia of vortex has often been neglected when one accounts for their motion, our results imply that vortices actually have inertial-induced memory such that their short term movement can be predicted. Extending to astro- and geo-physics, the critical timescales of transition are in the order of minutes for vortices in atmosphere and ocean, in which this inertial effect may often be neglected compared to other steering sources. However, the timescales for vortices are considerably larger which range from days to a year. It infers the new concept that not only the external sources alone, for example the solar wind, but also the internal source, which is the vortex inertia, can contribute to the short term Earths magnetic field variation.
Despite intense interest in realizing topological phases across a variety of electronic, photonic and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hall marks of topological modes - boundary localization and chirality - emerge from Newtons laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust dangling bond boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, a very experimentally realistic mechanical non-equilibrium (Floquet) Chern lattice driven by AC electromagnets. Through appropriate synchronization of the AC driving protocol, the Floquet lattice is pushed around by a rotating potential analogous to an object washed ashore by water waves. Besides hosting dangling bond chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems are applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups.
The two-dimensional cage model for polymer motion is discussed with an emphasis on the effect of sideways motions, which cross the barriers imposed by the lattice. Using the Density Matrix Method as a solver of the Master Equation, the renewal time a nd the diffusion coefficient are calculated as a function of the strength of the barrier crossings. A strong crossover influence of the barrier crossings is found and it is analyzed in terms of effective exponents for a given chain length. The crossover scaling functions and the crossover scaling exponents are calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا