ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistance of doped silicon

212   0   0.0 ( 0 )
 نشر من قبل Bo Sernelius
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed longitudinal magnetoresistance measurements on heavily n-doped silicon for donor concentrations exceeding the critical value for the metal-non-metal transition. The results are compared to those from a many-body theory where the donor-electrons are assumed to reside at the bottom of the many-valley conduction band of the host. Good qualitative agreement between theory and experiment is obtained.



قيم البحث

اقرأ أيضاً

We report here an experimental and theoretical study on the magnetoresistance properties of heavily phosphorous doped germanium on the metallic side of the metal-nonmetal transition. An anomalous regime, formed by negative values of the magnetoresist ance, was observed by performing low-temperature measurements and explained within the generalized Drude model, due to the many-body effects. It reveals a key mechanism behind the magnetoresistance properties at low temperatures and, therefore, constitutes a path to its manipulation in such materials of great interest in fundamental physics and technological applications
184 - Nuo Yang , Gang Zhang , Baowen Li 2007
The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conducti vity reaches the minimum, which is about 27% of that of pure 28Si NW, when doped with fifty percent isotope atoms. The thermal conductivity of isotopic-superlattice structured SiNWs depends clearly on the period of superlattice. At a critical period of 1.09 nm, the thermal conductivity is only 25% of the value of pure Si NW. An anomalous enhancement of thermal conductivity is observed when the superlattice period is smaller than this critical length. The ultra-low thermal conductivity of superlattice structured SiNWs is explained with phonon spectrum theory.
A magnetic field parallel to an electrical current does not produce a Lorentz force on the charge carriers. Therefore, orbital longitudinal magnetoresistance is unexpected. Here we report on the observation of a large and non saturating magnetoresist ance in lightly doped SrTiO$_{3-x}$ independent of the relative orientation of current and magnetic field. We show that this quasi-isotropic magnetoresistance can be explained if the carrier mobility along all orientations smoothly decreases with magnetic field. This anomalous regime is restricted to low concentrations when the dipolar correlation length is longer than the distance between carriers. We identify cyclotron motion of electrons in a potential landscape tailored by polar domains as the cradle of quasi-isotropic orbital magnetoresistance. The result emerges as a challenge to theory and may be a generic feature of lightly-doped quantum paralectric materials.
Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.
We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant k nown to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا