ترغب بنشر مسار تعليمي؟ اضغط هنا

High Curie temperature and perpendicular magnetic anisotropy in homoepitaxial InMnAs films

139   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have prepared the dilute magnetic semiconductor (DMS) InMnAs with different Mn concentrations by ion implantation and pulsed laser melting. The Curie temperature of the In1-xMnxAs epilayer depends on the Mn concentration x, reaching 82 K for x=0.105. The substitution of Mn ions at the Indium sites induces a compressive strain perpendicular to the InMnAs layer and a tensile strain along the in-plane direction. This gives rise to a large perpendicular magnetic anisotropy, which is often needed for the demonstration of electrical control of magnetization and for spin-transfer-torque induced magnetization reversal.



قيم البحث

اقرأ أيضاً

Nanoscale layered ferromagnets have demonstrated fascinating two-dimensional magnetism down to atomic layers, providing a peculiar playground of spin orders for investigating fundamental physics and spintronic applications. However, strategy for grow ing films with designed magnetic properties is not well established yet. Herein, we present a versatile method to control the Curie temperature (T_{C}) and magnetic anisotropy during growth of ultrathin Cr_{2}Te_{3} films. We demonstrate increase of the TC from 165 K to 310 K in sync with magnetic anisotropy switching from an out-of-plane orientation to an in-plane one, respectively, via controlling the Te source flux during film growth, leading to different c-lattice parameters while preserving the stoichiometries and thicknesses of the films. We attributed this modulation of magnetic anisotropy to the switching of the orbital magnetic moment, using X-ray magnetic circular dichroism analysis. We also inferred that different c-lattice constants might be responsible for the magnetic anisotropy change, supported by theoretical calculations. These findings emphasize the potential of ultrathin Cr_{2}Te_{3} films as candidates for developing room-temperature spintronics applications and similar growth strategies could be applicable to fabricate other nanoscale layered magnetic compounds.
Domain structures in CoFeB-MgO thin films with a perpendicular easy magnetization axis were observed by magneto-optic Kerr-effect microscopy at various temperatures. The domain wall surface energy was obtained by analyzing the spatial period of the s tripe domains and fitting established domain models to the period. In combination with SQUID measurements of magnetization and anisotropy energy, this leads to an estimate of the exchange stiffness and domain wall width in these films. These parameters are essential for determining whether domain walls will form in patterned structures and devices made of such materials.
224 - P. Kharel , P. Thapa , P. Lukashev 2010
We report on the study of the structural, magnetic and transport properties of highly textured MnBi films with the Curie temperature of 628K. In addition to detailed measurements of resistivity and magnetization, we measure transport spin polarizatio n of MnBi by Andreev reflection spectroscopy and perform fully relativistic band structure calculations of MnBi. A spin polarization from 51pm1 to 63pm1% is observed, consistent with the calculations and with an observation of a large magnetoresistance in MnBi contacts. The band structure calculations indicate that, in spite of almost identical densities of states at the Fermi energy, the large disparity in the Fermi velocities leads to high transport spin polarization of MnBi. The correlation between the values of magnetization and spin polarization is discussed.
High perpendicular magnetic anisotropy (PMA), a property needed for nanoscale spintronic applications, is rare in oxide conductors. We report the observation of a PMA up to 0.23 MJ/m3 in modestly strained epitaxial NiCo2O4 (NCO) films which are room- temperature ferrimagnetic conductors. Spin-lattice coupling manifested as magnetoelastic effect was found as the origin of the PMA. The in-plane xx-yy states of Co on tetrahedral sites play crucial role in the magnetic anisotropy and spin-lattice coupling with an energy scale of 1 meV/f.u. The elucidation of the microscopic origin paves a way for engineering oxide conductors for PMA using metal/oxygen hybridizations.
We present experimental control of the magnetic anisotropy in a gadolinium iron garnet (GdIG) thin film from in-plane to perpendicular anisotropy by simply changing the sample temperature. The magnetic hysteresis loops obtained by SQUID magnetometry measurements unambiguously reveal a change of the magnetically easy axis from out-of-plane to in-plane depending on the sample temperature. Additionally, we confirm these findings by the use of temperature dependent broadband ferromagnetic resonance spectroscopy (FMR). In order to determine the effective magnetization, we utilize the intrinsic advantage of FMR spectroscopy which allows to determine the magnetic anisotropy independent of the paramagnetic substrate, while magnetometry determines the combined magnetic moment from film and substrate. This enables us to quantitatively evaluate the anisotropy and the smooth transition from in-plane to perpendicular magnetic anisotropy. Furthermore, we derive the temperature dependent $g$-factor and the Gilbert damping of the GdIG thin film.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا