ﻻ يوجد ملخص باللغة العربية
We present an integral field study of the internal structure, kinematics and stellar population of the almost edge-on, intermediate luminosity ($L_ {*}$) elliptical galaxy NGC 4697. We build extended 2-dimensional (2D) maps of the stellar kinematics and line-strengths of the galaxy up to $sim 0.7 $ effective radii (R$_{eff}$) using a mosaic of 8 VIMOS (VIsible Multi-Objects Spectrograph on the VLT) integral-field unit pointings. We find clear evidence for a rotation-supported structure along the major axis from the 2D kinematical maps, confirming the previous classification of this system as a `fast-rotator. We study the correlations between the third and fourth Gauss-Hermite moments of the line-of-sight velocity distribution (LOSVD) $h_3$ and $h_4$ with the rotation parameter ($V/sigma$), and compare our findings to hydrodynamical simulations. We find remarkable similarities to predictions from gas-rich mergers. Based on photometry, we perform a bulge/disk decomposition and study the stellar population properties of the two components. The bulge and the disk show different stellar populations, with the stars in the bulge being older (age$_{rm bulge}=13.5^{+1.4}_{-1.4}$ Gyr, age$_{rm disk}=10.5^{+1.6}_{-2.0}$Gyr) and more metal-poor ($mathrm{[M/H]_{bulge}} = -0.17^{+0.12}_{-0.1}$, $mathrm{[M/H]_{disk}}=-0.03^{+0.02}_{-0.1}$). The evidence of a later-formed, more metal-rich disk embedded in an older, more metal-poor bulge, together with the LOSVD structure, supports a mass assembly scenario dominated by gas-rich minor mergers and possibly with a late gas-rich major merger that left a previously rapidly rotating system unchanged. The bulge and the disk do not show signs of different stellar Initial Mass Function slopes, and both match well with a Milky Way-like IMF.
Observations of galaxy isophotes, longs-slit kinematics and high-resolution photometry suggested a possible dichotomy between two distinct classes of E galaxies. But these methods are expensive for large galaxy samples. Instead, integral-field spectr
We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation and velocity dispersion p
We present optical integral field spectroscopy of the inner $2.5 times 3.4$ kpc$^2$ of the broad-line radio galaxy Pictor A, at a spatial resolution of $approx 400$ pc. Line emission is observed over the whole field-of-view, being strongest at the nu
NGC 4203 is a nearby early-type galaxy surrounded by a very large, low-column-density HI disc. In this paper we study the star formation efficiency in the gas disc of NGC 4203 by using the UV, deep optical imaging and infrared data. We confirm that t
Galaxy flybys are as common as mergers in low redshift universe and are important for galaxy evolution as they involve the exchange of significant amounts of mass and energy. In this study we investigate the effect of minor flybys on the bulges, disk