ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators

148   0   0.0 ( 0 )
 نشر من قبل Panagiotis Karampourniotis D
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set.



قيم البحث

اقرأ أيضاً

78 - Wei Wang , Ming Tang , Panpan Shu 2015
Heterogeneous adoption thresholds exist widely in social contagions, but were always neglected in previous studies. We first propose a non-Markovian spreading threshold model with general adoption threshold distribution. In order to understand the ef fects of heterogeneous adoption thresholds quantitatively, an edge-based compartmental theory is developed for the proposed model. We use a binary spreading threshold model as a specific example, in which some individuals have a low adoption threshold (i.e., activists) while the remaining ones hold a relatively high adoption threshold (i.e., bigots), to demonstrate that heterogeneous adoption thresholds markedly affect the final adoption size and phase transition. Interestingly, the first-order, second-order and hybrid phase transitions can be found in the system. More importantly, there are two different kinds of crossover phenomena in phase transition for distinct values of bigots adoption threshold: a change from first-order or hybrid phase transition to the second-order phase transition. The theoretical predictions based on the suggested theory agree very well with the results of numerical simulations.
In this Chapter, we discuss the effects of higher-order structures on SIS-like processes of social contagion. After a brief motivational introduction where we illustrate the standard SIS process on networks and the difference between simple and compl ex contagions, we introduce spreading processes on higher-order structures starting from the most general formulation on hypergraphs and then moving to several mean-field and heterogeneous mean-field approaches. The results highlight the rich phenomenology brought by taking into account higher-order contagion effects: both continuous and discontinuous transitions are observed, and critical mass effects emerge. We conclude with a short discussion on the theoretical results regarding the nature of the epidemic transition and the general need for data to validate these models.
Our understanding of the dynamics of complex networked systems has increased significantly in the last two decades. However, most of our knowledge is built upon assuming pairwise relations among the systems components. This is often an oversimplifica tion, for instance, in social interactions that occur frequently within groups. To overcome this limitation, here we study the dynamics of social contagion on hypergraphs. We develop an analytical framework and provide numerical results for arbitrary hypergraphs, which we also support with Monte Carlo simulations. Our analyses show that the model has a vast parameter space, with first and second-order transitions, bi-stability, and hysteresis. Phenomenologically, we also extend the concept of latent heat to social contexts, which might help understanding oscillatory social behaviors. Our work unfolds the research line of higher-order models and the analytical treatment of hypergraphs, posing new questions and paving the way for modeling dynamical processes on these networks.
In this paper, we discuss the possible generalizations of the Social Influence with Recurrent Mobility (SIRM) model developed in Phys. Rev. Lett. 112, 158701 (2014). Although the SIRM model worked approximately satisfying when US election was modelle d, it has its limits: it has been developed only for two-party systems and can lead to unphysical behaviour when one of the parties has extreme vote share close to 0 or 1. We propose here generalizations to the SIRM model by its extension for multi-party systems that are mathematically well-posed in case of extreme vote shares, too, by handling the noise term in a different way. In addition, we show that our method opens new applications for the study of elections by using a new calibration procedure, and makes possible to analyse the influence of the free will (creating a new party) and other local effects for different commuting network topologies.
Complex networks have been successfully used to describe the spread of diseases in populations of interacting individuals. Conversely, pairwise interactions are often not enough to characterize social contagion processes such as opinion formation or the adoption of novelties, where complex mechanisms of influence and reinforcement are at work. Here we introduce a higher-order model of social contagion in which a social system is represented by a simplicial complex and contagion can occur through interactions in groups of different sizes. Numerical simulations of the model on both empirical and synthetic simplicial complexes highlight the emergence of novel phenomena such as a discontinuous transition induced by higher-order interactions. We show analytically that the transition is discontinuous and that a bistable region appears where healthy and endemic states co-exist. Our results help explain why critical masses are required to initiate social changes and contribute to the understanding of higher-order interactions in complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا