ترغب بنشر مسار تعليمي؟ اضغط هنا

$n$-ary Hom-Nambu algebras

165   0   0.0 ( 0 )
 نشر من قبل Liangyun Chen
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we define $omega$-derivations, and study some properties of $omega$-derivations, with its properties we can structure a new $n$-ary Hom-Nambu algebra from an $n$-ary Hom-Nambu algebra. In addition, we also give derivations and representations of $n$-ary Hom-Nambu algebras.



قيم البحث

اقرأ أيضاً

116 - Yury Volkov 2019
$n$-ary algebras of the first degeneration level are described. A detailed classification is given in the cases $n=2,3$.
171 - Lina Song , Rong Tang 2017
In this paper, first we give the cohomologies of an $n$-Hom-Lie algebra and introduce the notion of a derivation of an $n$-Hom-Lie algebra. We show that a derivation of an $n$-Hom-Lie algebra is a $1$-cocycle with the coefficient in the adjoint repre sentation. We also give the formula of the dual representation of a representation of an $n$-Hom-Lie algebra. Then, we study $(n-1)$-order deformation of an $n$-Hom-Lie algebra. We introduce the notion of a Hom-Nijenhuis operator, which could generate a trivial $(n-1)$-order deformation of an $n$-Hom-Lie algebra. Finally, we introduce the notion of a generalized derivation of an $n$-Hom-Lie algebra, by which we can construct a new $n$-Hom-Lie algebra, which is called the generalized derivation extension of an $n$-Hom-Lie algebra.
In the present paper, we prove that every local and $2$-local derivation of the complex finite-dimensional simple Filippov algebra is a derivation. As a corollary we have the description of all local and $2$-local derivations of complex finite-dimens ional semisimple Filippov algebras. All local derivations of the ternary Malcev algebra $M_8$ are described. It is the first example of a finite-dimensional simple algebra that admits pure local derivations, i.e. algebra admits a local derivation which is not a derivation.
83 - Lina Song , Rong Tang 2016
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebr as. We show that iso- morphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h are in one-to-one correspondence with homotopy classes of morphisms from g to the derivation Hom-Lie 2-algebra DER(h).
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie- Rinehart algebras, called split regular Hom 3-Lie-Rinehart algebras, and we then characterize their structures by means of root systems and weight systems associated to a splitting Cartan subalgebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا