ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of the interface resistance in non-local Hanle measurements

157   0   0.0 ( 0 )
 نشر من قبل Felix Casanova
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into account the influence of the interface resistance, is used to fit our results. Whereas the fitted spin-diffusion length value is in agreement with the one obtained from standard non-local measurements in the case of a finite interface resistance, in the case of transparent contacts a clear disagreement is observed. The use of a corrected expression, recently proposed to account for the anisotropy of the spin absorption at the ferromagnetic electrodes, still yields a deviation of the fitted spin-diffusion length which increases for shorter channel distances. This deviation shows how sensitive the non-local Hanle fittings are, evidencing the complexity of obtaining spin transport information from such type of measurements.



قيم البحث

اقرأ أيضاً

We report on the emergence of bulk, valley-polarized currents in graphene-based devices, driven by spatially varying regions of broken sublattice symmetry, and revealed by non-local resistance ($R_mathrm{NL}$) fingerprints. By using a combination of quantum transport formalisms, giving access to bulk properties as well as multi-terminal device responses, the presence of a non-uniform local bandgap is shown to give rise to valley-dependent scattering and a finite Fermi surface contribution to the valley Hall conductivity, related to characteristics of $R_mathrm{NL}$. These features are robust against disorder and provide a plausible interpretation of controversial experiments in graphene/hBN superlattices. Our findings suggest both an alternative mechanism for the generation of valley Hall effect in graphene, and a route towards valley-dependent electron optics, by materials and device engineering.
We have succeeded in fully describing dynamic properties of spin current including the different spin absorption mechanism for longitudinal and transverse spins in lateral spin valves, which enables to elucidate intrinsic spin transport and relaxatio n mechanism in the nonmagnet. The deduced spin lifetimes are found independent of the contact type. From the transit-time distribution of spin current extracted from the Fourier transform in Hanle measurement data, the velocity of the spin current in Ag with Py/Ag Ohmic contact turns out much faster than that expected from the widely used model.
We investigate quantum fluctuations in the non-local resistance of an open quantum dot which is connected to four reservoirs via quantum point contacts. In this four-terminal quantum dot the voltage path can be separated from the current path. We mea sured non-local resistance fluctuations of several hundreds of Ohms, which have been characterized as a function of bias voltage, gate voltage and perpendicular magnetic field. The amplitude of the resistance fluctuations is strongly reduced when the coupling between the voltage probes and the dot is enhanced. Along with experimental results, we present a theoretical analysis based on the Landauer-B{u}ttiker formalism. While the theory predicts non-local resistance fluctuations of considerably larger amplitude than what has been observed, agreement with theory is very good if an additional dephasing mechanism is assumed.
We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described b y a Lorentzian with the width determined by the effective g-factor and the spin lifetime. In contrast, the magnetic field dependence of spin polarization in high-mobility quantum wells is nonmonotonic: The spin polarization rises with the magnetic field induction at small fields, reaches maximum and then decreases. We show that the position of the Hanle curve maximum can be used to directly measure the spin-orbit Rashba/Dresselhaus magnetic field.
121 - Kin Chung Fong 2017
We analyze the effect of contact resistance on the Lorenz number measurement based on direct electronic thermal conductivity experiments. The contact resistance can significantly limit the experimental measured value when the Lorenz number is enhance d, but not as much so when it is suppressed, should the Wiedemann-Franz law be violated. The result provides the conditions of the potential false negative error and highlights the importance of improving the contact resistance in studying non-Fermi liquid behavior in thermal transport experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا