ﻻ يوجد ملخص باللغة العربية
We study a temporally third order (Moore-Gibson-Thompson) equation with a memory term. Previously it is known that, in non-critical regime, the global solutions exist and the energy functionals decay to zero. More precisely, it is known that the energy has exponential decay if the memory kernel decays exponentially. The current work is a generalization of the previous one (Part I) in that it allows the memory kernel to be more general and shows that the energy decays the same way as the memory kernel does, exponentially or not.
We are interested in the Moore-Gibson-Thompson(MGT) equation with memory begin{equation} onumber tau u_{ttt}+ alpha u_{tt}+c^2A u+bA u_t -int_0^tg(t-s)A w(s)ds=0. end{equation} We first classify the memory into three types. Then we study how a memory
We consider the MGT equation with memory $$partial_{ttt} u + alpha partial_{tt} u - beta Delta partial_{t} u - gammaDelta u + int_{0}^{t}g(s) Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumption on the
In this paper we consider the problem: $partial_{t} u- Delta u=f(u),; u(0)=u_0in exp L^p(R^N),$ where $p>1$ and $f : RtoR$ having an exponential growth at infinity with $f(0)=0.$ We prove local well-posedness in $exp L^p_0(R^N)$ for $f(u)sim mbox{e}^
Consider the energy-critical focusing wave equation in space dimension $Ngeq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. It is conjectured (soliton resolution) that any radial, bounded
We consider the so-called prion equation with the general incidence term introduced in [Greer et al., 2007], and we investigate the stability of the steady states. The method is based on the reduction technique introduced in [Gabriel, 2012]. The argu