ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting the Exchange Phase of Majorana Bound States in a Corbino Geometry Topological Josephson Junction

125   0   0.0 ( 0 )
 نشر من قبل Sunghun Park
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A phase from an adiabatic exchange of Majorana bound states (MBS) reveals their exotic anyonic nature. For detecting this exchange phase, we propose an experimental setup consisting of a Corbino-geometry Josephson junction on the surface of a topological insulator, in which two MBS at zero energy can be created and rotated. We find that if a metallic tip is weakly coupled to a point on the junction, the time-averaged differential conductance of the tip-Majorana coupling shows peaks at the tip voltages $eV = pm (alpha - 2pi l) hbar/ T_J$, where $alpha = pi/2$ is the exchange phase of the two circulating MBS, $T_J$ is the half rotation time of MBS, and $l$ an integer. This result constitutes a clear experimental signature of Majorana fermion exchange.



قيم البحث

اقرأ أيضاً

Topological superconductivity supports exotic Majorana bound states (MBS) which are chargeless zero-energy emergent quasiparticles. With their non-Abelian exchange statistics and fractionalization of a single electron stored nonlocally as a spatially separated MBS, they are particularly suitable for implementing fault-tolerant topological quantum computing. While the main efforts to realize MBS have focused on one-dimensional systems, the onset of topological superconductivity requires delicate parameter tuning and geometric constraints pose significant challenges for their control and demonstration of non-Abelian statistics. To overcome these challenges, building on recent experimental advances in planar Josephson junctions (JJs), we propose a MBS platform of X-shaped JJs. This versatile implementation reveals how external flux control of the superconducting phase difference can generate and manipulate multiple MBS pairs to probe non-Abelian statistics. The underlying topological superconductivity exists over a large parameter space, consistent with materials used in our fabrication of such X junctions, as an important step towards scalable topological quantum computing.
As part of the intense effort towards identifying platforms in which Majorana bound states can be realized and manipulated to perform qubit operations, we propose a topological Josephson junction architecture that achieves these capabilities and whic h can be experimentally implemented. The platform uses conventional superconducting electrodes deposited on a topological insulator film to form networks of proximity-coupled lateral Josephson junctions. Magnetic fields threading the network of junction barriers create Josephson vortices that host Majorana bound states localized in the junction where the local phase difference is an odd multiple of $pi$, i.e. attached to the cores of the Josephson vortices. This enables us to manipulate the Majorana states by moving the Josephson vortices, achieving functionality exclusive to these systems in contrast to others, such as those composed of topological superconductor nanowires. We describe protocols for: 1) braiding localized Majorana states by exchange, 2) controlling the separation and hence the coupling of adjacent localized Majorana states to effect non-Abelian rotations via hybridization of the Majorana modes, and 3) reading out changes in the non-local parity correlations induced by such operations. These schemes make use of the application of current pulses and local magnetic field pulses to control the location of vortices, and measurements of the Josephson current-phase relation to reveal the presence of the Majorana bound states. We describe the architecture and schemes in the context of experiments currently underway.
79 - S. Ikegaya , Y. Asano 2016
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across the junction $varphi$ being $pi$, we will show that all of the Majorana bound states in the normal metal belong to the same chirality. Due to this pure chiral feature, the Majorana bound states retain their high degree of degeneracy at the zero energy even in the presence of random potential. As a consequence, the resonant transmission of a Cooper pair via the degenerate MBSs carries the Josephson current at $varphi=pi-0^+$, which explains the fractional current-phase relationship discussed in a number of previous papers.
197 - Doru Sticlet , Bas Nijholt , 2016
We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse supercon ducting gap. This short junction limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: $g$-factor, effective electron mass, and the semiconductor-superconductor interface transparency.
Topological superconductors can support localized Majorana states at their boundaries. These quasi-particle excitations have non-Abelian statistics that can be used to encode and manipulate quantum information in a topologically protected manner. Whi le signatures of Majorana bound states have been observed in one-dimensional systems, there is an ongoing effort to find alternative platforms that do not require fine-tuning of parameters and can be easily scalable to large numbers of states. Here we present a novel experimental approach towards a two-dimensional architecture. Using a Josephson junction made of HgTe quantum well coupled to thin-film aluminum, we are able to tune between a trivial and a topological superconducting state by controlling the phase difference $phi$ across the junction and applying an in-plane magnetic field. We determine the topological state of the induced superconductor by measuring the tunneling conductance at the edge of the junction. At low magnetic fields, we observe a minimum in the tunneling spectra near zero bias, consistent with a trivial superconductor. However, as the magnetic field increases, the tunneling conductance develops a zero-bias peak which persists over a range of $phi$ that expands systematically with increasing magnetic fields. Our observations are consistent with theoretical predictions for this system and with full quantum mechanical numerical simulations performed on model systems with similar dimensions and parameters. Our work establishes this system as a promising platform for realizing topological superconductivity and for creating and manipulating Majorana modes and will therefore open new avenues for probing topological superconducting phases in two-dimensional systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا