ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Measurements with General Relativistic Galaxy Correlations

128   0   0.0 ( 0 )
 نشر من قبل Alvise Raccanelli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alvise Raccanelli




اسأل ChatGPT حول البحث

We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called relativistic effects, and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.



قيم البحث

اقرأ أيضاً

We use HII starburst galaxy apparent magnitude measurements to constrain cosmological parameters in six cosmological models. A joint analysis of HII galaxy, quasar angular size, baryon acoustic oscillations peak length scale, and Hubble parameter mea surements result in relatively model-independent and restrictive estimates of the current values of the non-relativistic matter density parameter $Omega_{rm m_0}$ and the Hubble constant $H_0$. These estimates favor a 2.0$sigma$ to 3.4$sigma$ (depending on cosmological model) lower $H_0$ than what is measured from the local expansion rate. The combined data are consistent with dark energy being a cosmological constant and with flat spatial hypersurfaces, but do not strongly rule out mild dark energy dynamics or slightly non-flat spatial geometries.
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
We compare the constraints from two (2019 and 2021) compilations of HII starburst galaxy (HIIG) data and test the model-independence of quasar angular size (QSO) data using six spatially flat and non-flat cosmological models. We find that the new 202 1 compilation of HIIG data generally provides tighter constraints and prefers lower values of cosmological parameters than those from the 2019 HIIG data. QSO data by themselves give relatively model-independent constraints on the characteristic linear size, $l_{rm m}$, of the QSOs within the sample. We also use Hubble parameter ($H(z)$), baryon acoustic oscillation (BAO), Pantheon Type Ia supernova (SN Ia) apparent magnitude (SN-Pantheon), and DES-3yr binned SN Ia apparent magnitude (SN-DES) measurements to perform joint analyses with HIIG and QSO angular size data, since their constraints are not mutually inconsistent within the six cosmological models we study. A joint analysis of $H(z)$, BAO, SN-Pantheon, SN-DES, QSO, and the newest compilation of HIIG data provides almost model-independent summary estimates of the Hubble constant, $H_0=69.7pm1.2 rm{km s^{-1} Mpc^{-1}}$, the non-relativistic matter density parameter, $Omega_{rm m_0}=0.293pm0.021$, and $l_{rm m}=10.93pm0.25$ pc.
This is the third of a series of papers in which we derive simultaneous constraints on cosmological parameters and X-ray scaling relations using observations of the growth of massive, X-ray flux-selected galaxy clusters. Our data set consists of 238 clusters drawn from the ROSAT All-Sky Survey, and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Here we present improved constraints on departures from General Relativity (GR) on cosmological scales, using the growth index, gamma, to parameterize the linear growth rate of cosmic structure. Using the method of Mantz et al. (2009a), we simultaneously and self-consistently model the growth of X-ray luminous clusters and their observable-mass scaling relations, accounting for survey biases, parameter degeneracies and systematic uncertainties. We combine the cluster growth data with gas mass fraction, SNIa, BAO and CMB data. This combination leads to a tight correlation between gamma and sigma_8. Consistency with GR requires gamma~0.55. Under the assumption of self-similar evolution and constant scatter in the scaling relations, and for a flat LCDM model, we measure gamma(sigma_8/0.8)^6.8=0.55+0.13-0.10, with 0.79<sigma_8<0.89. Relaxing the assumptions on the scaling relations by introducing two additional parameters to model possible evolution in the normalization and scatter of the luminosity-mass relation, we obtain consistent constraints on gamma that are only ~20% weaker than those above. Allowing the dark energy equation of state, w, to take any constant value, we simultaneously constrain the growth and expansion histories, and find no evidence for departures from either GR or LCDM. Our results represent the most robust consistency test of GR on cosmological scales to date. (Abridged)
Reduced Relativistic Gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the J{u}ttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a new Physics. On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational exponents for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity $v$ for dark matter particles which is parameterized by the warmness parameter $b$. The relatively high values of $b$ ( $b^2gtrsim 10^{-6}$) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of $lesssim 1%$. A warmness with $b^2lesssim 10^{-6}$ (equivalent to $vlesssim 300 km/s$) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا