ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a New Type of Low Frequency Waves at Comet 67P/Churyumov-Gerasimenko

148   0   0.0 ( 0 )
 نشر من قبل Ingo Richter
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent, large-amplitude ($delta B/B sim 1$), compressional magnetic field oscillations at $sim$ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied comet-interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pick-up ion driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.



قيم البحث

اقرأ أيضاً

We present Rosetta RPC case study from four events at various radial distance, phase angle and local time from autumn 2015, just after perihelion of comet 67P/Churyumov-Gerasimenko. Pulse like (high amplitude, up to minutes in time) signatures are se en with several RPC instruments in the plasma density (LAP, MIP), ion energy and flux (ICA) as well as magnetic field intensity (MAG). Furthermore the cometocentric distance relative to the electron exobase is seen to be a good organizing parameter for the measured plasma variations. The closer Rosetta is to this boundary, the more pulses are measured. This is consistent with the pulses being filaments of plasma originating from the diamagnetic cavity boundary as predicted by simulations.
We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 5-6 Oct 2015, when Rosetta was about 800 km from the comet nucleus, textcolor{black}{and 1.4 AU from the Sun} . Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of $sim$2.5. The plasma density increases by a factor of 10 and reaches 600 cm$^{-3}$, due to increased particle impact ionisation, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the textcolor{black}{limited orbit of Rosetta}, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.
The Rosetta spacecraft detected transient and sporadic diamagnetic regions around comet 67P/Churyumov-Gerasimenko. In this paper we present a statistical analysis of bulk and suprathermal electron dynamics, as well as a case study of suprathermal ele ctron pitch angle distributions (PADs) near a diamagnetic region. Bulk electron densities are correlated with the local neutral density and we find a distinct enhancement in electron densities measured over the southern latitudes of the comet. Flux of suprathermal electrons with energies between tens of eV to a couple of hundred eV decreases each time the spacecraft enters a diamagnetic region. We propose a mechanism in which this reduction can be explained by solar wind electrons that are tied to the magnetic field and after having been transported adiabatically in a decaying magnetic field environment, have limited access to the diamagnetic regions. Our analysis shows that suprathermal electron PADs evolve from an almost isotropic outside the diamagnetic cavity to a field-aligned distribution near the boundary. Electron transport becomes chaotic and non-adiabatic when electron gyroradius becomes comparable to the size of the magnetic field line curvature, which determines the upper energy limit of the flux variation. This study is based on Rosetta observations at around 200 km cometocentric distance when the comet was at 1.24 AU from the Sun and during the southern summer cometary season.
Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the S olar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C-G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C-G is given and model parameters are derived from these data where possible. For quantities not yet measured for 67P/C-G, we use values obtained for other comets. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C-G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that the results from such analyses are at present rather heterogeneous, and we identify a need to find a model that is reconcilable with all available observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا