ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

147   0   0.0 ( 0 )
 نشر من قبل Wessel Valkenburg
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zeldovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond {Lambda}-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.



قيم البحث

اقرأ أيضاً

Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling m ethod can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for LambdaCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple N-body gauge for z<50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable forwards approach for such cases.
Model-independent constraints on modified gravity models hitherto exist mainly on linear scales. A recently developed formalism presented a consistent parameterisation that is valid on all scales. Using this approach, we perform model-independent mod ified gravity $N$-body simulations on all cosmological scales with a time-dependent $mu$. We present convergence tests of our simulations, and we examine how well existing fitting functions reproduce the non-linear matter power spectrum of the simulations. We find that although there is a significant variation in the accuracy of all of the fitting functions over the parameter space of our simulations, the ReACT framework delivers the most consistent performance for the matter power spectrum. We comment on how this might be improved to the level required for future surveys such as Euclid and the Vera Rubin Telescope (LSST). We also show how to compute weak-lensing observables consistently from the simulated matter power spectra in our approach, and show that ReACT also performs best when fitting the weak-lensing observables. This paves the way for a full model-independent test of modified gravity using all of the data from such upcoming surveys.
We show how standard Newtonian N-body simulations can be interpreted in terms of the weak-field limit of general relativity by employing the recently developed Newtonian motion gauge. Our framework allows the inclusion of radiation perturbations and the non-linear evolution of matter. We show how to construct the weak-field metric by combining Newtonian simulations with results from Einstein-Boltzmann codes. We discuss observational effects on weak lensing and ray tracing, identifying important relativistic corrections.
Cosmology is entering an era of percent level precision due to current large observational surveys. This precision in observation is now demanding more accuracy from numerical methods and cosmological simulations. In this paper, we study the accuracy of $N$-body numerical simulations and their dependence on changes in the initial conditions and in the simulation algorithms. For this purpose, we use a series of cosmological $N$-body simulations with varying initial conditions. We test the influence of the initial conditions, namely the pre-initial configuration (preIC), the order of the Lagrangian perturbation theory (LPT), and the initial redshift, on the statistics associated with the large scale structures of the universe such as the halo mass function, the density power spectrum, and the maximal extent of the large scale structures. We find that glass or grid pre-initial conditions give similar results at $zlesssim 2$. However, the initial excess of power in the glass initial conditions yields a subtle difference in the power spectra and the mass function at high redshifts. The LPT order used to generate the ICs of the simulations is found to play a crucial role. First-order LPT (1LPT) simulations underestimate the number of massive haloes with respect to second-order (2LPT) ones, typically by 2% at $10^{14} h^{-1} M_odot$ for an initial redshift of 23, and the small-scale power with an underestimation of 6% near the Nyquist frequency for $z_mathrm{ini} = 23$. Moreover, at higher redshifts, the high-mass end of the mass function is significantly underestimated in 1LPT simulations. On the other hand, when the LPT order is fixed, the starting redshift has a systematic impact on the low-mass end of the halo mass function.
We address the generation of initial conditions (ICs) for GRAMSES, a code for nonlinear general relativistic (GR) $N$-body cosmological simulations recently introduced in Ref. [1]. GRAMSES adopts a constant mean curvature slicing with a minimal disto rtion gauge, where the linear growth rate is scale-dependent, and the standard method for realising initial particle data is not straightforwardly applicable. A new method is introduced, in which the initial positions of particles are generated from the displacement field realised for a matter power spectrum as usual, but the velocity is calculated by finite-differencing the displacement fields around the initial redshift. In this way, all the information required for setting up the initial conditions is drawn from three consecutive input matter power spectra, and additional assumptions such as scale-independence of the linear growth factor and growth rate are not needed. We implement this method in a modified 2LPTic code, and demonstrate that in a Newtonian setting it can reproduce the velocity field given by the default 2LPTic code with subpercent accuracy. We also show that the matter and velocity power spectra of the initial particle data generated for GRAMSES simulations using this method agree very well with the linear-theory predictions in the particular gauge used by GRAMSES. Finally, we discuss corrections to the finite difference calculation of the velocity when radiation is present, as well as additional corrections implemented in GRAMSES to ensure consistency. This method can be applied in ICs generation for GR simulations in generic gauges, and simulations of cosmological models with scale-dependent linear growth rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا