ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer bright, UltraVISTA faint sources in COSMOS: the contribution to the overall population of massive galaxies at z=3-7

174   0   0.0 ( 0 )
 نشر من قبل Karina Caputi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]<23 and Ks_auto>24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]<23, Ks_auto>24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=<z<5, accounting for >~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.



قيم البحث

اقرأ أيضاً

115 - Mauro Stefanon 2014
We build a Spitzer IRAC complete catalog of objects, obtained by complementing the $K_mathrm{s}$-band selected UltraVISTA catalog with objects detected in IRAC only. With the aim of identifying massive (i.e., $log(M_*/M_odot)>11$) galaxies at $4<z<7$ , we consider the systematic effects on the measured photometric redshifts from the introduction of an old and dusty SED template and from the introduction of a bayesian prior taking into account the brightness of the objects, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in the recovery of stellar population parameters. We show that our results are most affected by the bayesian luminosity prior, while nebular emission lines and SFHs only introduce a small dispersion in the measurements. Specifically, the number of $4<z<7$ galaxies ranges from 52 to 382 depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at $4<z<7$. Given the rarity of very massive galaxies in the early universe, major contributions to the total error budget come from cosmic variance and poisson noise. The SMF obtained without the introduction of the bayesian luminosity prior does not show any evolution from $zsim6.5$ to $zsim 3.5$, implying that massive galaxies could already be present when the Universe was $sim0.9$~Gyr old. However, the introduction of the bayesian luminosity prior reduces the number of $z>4$ galaxies with best fit masses $log(M_*/M_odot)>11$ by 83%, implying a rapid growth of very massive galaxies in the first 1.5 Gyr of cosmic history. From the stellar-mass complete sample, we identify one candidate of a very massive ($log(M_*/M_odot)sim11.5$), quiescent galaxy at $zsim5.4$, with MIPS $24mu$m detection suggesting the presence of a powerful obscured AGN.
We have exploited the new, deep, near-infrared UltraVISTA imaging of the COSMOS field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ~ 7. The unique multi-wavelength dataset provide d by VISTA, CFHT, Subaru, HST and Spitzer over a common area of 1 deg^2 has allowed us to select galaxy candidates at z > 6.5 by searching first for Y+J-detected (< 25 AB mag) objects which are undetected in the CFHT+HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower-redshift galaxy contaminants and cool galactic M,L,T dwarf stars.The final result of this process is a small sample of (at most) ten credible galaxy candidates at z > 6.5 which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked SED yields z = 6.98+-0.05 with a stellar mass M* = 5x10^9 Msun, and rest-frame UV spectral slope beta = -2.0+-0.2. The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are low-redshift galaxies or dwarf stars cannot be excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf-star contamination, but also contains objects likely to lie at redshifts just below z = 6.5. We show that the three even-brighter z > 7 galaxy candidates reported in the COSMOS field by Capak et al. (2011) in fact all lie at z ~ 1.5-3.5. Consequently the new z ~ 7 galaxies reported here are the first credible z ~ 7 Lyman-break galaxies discovered in the COSMOS field and, as the most UV-luminous discovered to date at these redshifts, are prime targets for deep follow-up spectroscopy. We explore their physical properties, and briefly consider the implications of their inferred number density for the form of the galaxy luminosity function at z = 7.
We present an estimation of lifetimes of massive galaxies with distinct UV colors at $0.5 le z le 2.5$ in the COSMOS/UltraVISTA field. After dividing the galaxy sample into subsamples of red sequence (RS), blue cloud (BC), and green valley (GV) galax ies in different redshift bins, according to their rest-frame extinction-corrected UV colors, we derive their lifetimes using clustering analyses. Several essentials that may influence the lifetime estimation have been explored, including the dark matter (DM) halo mass function (HMF), the width of redshift bin, the growth of DM halos within each redshift bin, and the stellar mass. We find that the HMF difference results in scatters of $sim0.2$ dex on lifetime estimation; adopting a redshift bin width of $Delta z = 0.5$ is good enough to estimate the lifetime; and no significant effect on lifetime estimation is found due to the growth of DM halos within each redshift bin. The galaxy subsamples with higher stellar masses generally have shorter lifetimes; however, the lifetimes among different subsamples at z > 1:5 tend to be independent of stellar mass. Consistently, the clustering-based lifetime for each galaxy subsample agrees well with that inferred using the spectral energy distribution modeling. Moreover, the lifetimes of the RS and BC galaxies also coincide well with their typical gas depletion timescales attributed to the consumption of star formation. Interestingly, the distinct lifetime behaviors of the GV galaxies at $z le 1.5$ and $z>1.5$ can not be fully accounted for by their gas depletion timescales. Instead, this discrepancy between the lifetimes and gas depletion timescales of the GV galaxies suggests that there are additional physical processes, such as feedback of active galactic nuclei, accelerating the quenching of GV galaxies at high redshifts.
We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1<z<3. Our analysis is based on a bulge-disk decomposition of 396 galaxies with Mstar>10^11 Msolar from the CAN DELS WFC3/IR imaging within the COSMOS and UKIDSS UDS survey fields. We find that, by modelling the H(160) image of each galaxy with a combination of a de Vaucouleurs bulge (Sersic index n=4) and an exponential disk (n=1), we can then lock all derived morphological parameters for the bulge and disk components, and successfully reproduce the shorter-wavelength J(125), i(814), v(606) HST images simply by floating the magnitudes of the two components. This then yields sub-divided 4-band HST photometry for the bulge and disk components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information we are able to properly determine the masses and star-formation rates for the bulge and disk components, and find that: i) from z=3 to z=1 the galaxies move from disk-dominated to increasingly bulge-dominated, but very few galaxies are pure bulges/ellipticals by z=1; ii) while most passive galaxies are bulge-dominated, and most star-forming galaxies disk-dominated, 18+/-5% of passive galaxies are disk-dominated, and 11+/-3% of star-forming galaxies are bulge-dominated, a result which needs to be explained by any model purporting to connect star-formation quenching with morphological transformations; iii) there exists a small but significant population of pure passive disks, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a~0.7); iv) flatter/larger disks re-emerge at the highest star-formation rates, consistent with recent studies of sub-mm galaxies, and with the concept of a maximum surface-density for star-formation activity.
We have used the zCOSMOS-bright 10k sample to identify 3244 Spitzer/MIPS 24-micron-selected galaxies with 0.06< S(24um)< 0.50 mJy and I(AB)<22.5, over 1.5 deg^2 of the COSMOS field, and studied different spectral properties, depending on redshift. At 0.2<z<0.3, we found that different reddening laws of common use in the literature explain the dust extinction properties of around 80% of our infrared (IR) sources, within the error bars. For up to 16% of objects, instead, the Halpha/Hbeta ratios are too high for their IR/UV attenuations, which is probably a consequence of inhomogenous dust distributions. In only a few of our galaxies at 0.2<z<0.3 the IR emission could be mainly produced by dust heated by old rather than young stars. Besides, the line ratios of ~22% of our galaxies suggest that they might be star-formation/nuclear-activity composite systems. At 0.5<z<0.7, we estimated galaxy metallicities for 301 galaxies: at least 12% of them are securely below the upper-branch mass-metallicity trend, which is consistent with the local relation. Finally, we performed a combined analysis of the Hdelta equivalent-width versus Dn(4000) diagram for 1722 faint and bright 24um galaxies at 0.6<z<1.0, spanning two decades in mid-IR luminosity. We found that, while secondary bursts of star formation are necessary to explain the position of the most luminous IR galaxies in that diagram, quiescent, exponentially-declining star formation histories can well reproduce the spectral properties of ~40% of the less luminous sources. Our results suggest a transition in the possible modes of star formation at total IR luminosities L(TIR)=(3 +/-2)x10^11 Lsun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا