ﻻ يوجد ملخص باللغة العربية
Aims. Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by $kappa$-distributions. The free-free spectrum and radiative losses depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods. We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than $10^{-10}$ in units of $z^2Ry$. We used double and quadruple precisions. The temperature- averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results. The temperature-averaged and total Gaunt factors depend on the $kappa$ parameter, which shows increasing deviations (with respect to the results obtained with the use of the Maxwellian distribution) with decreasing $kappa$. Tables of these Gaunt factors are provided.
Tracking the thermal evolution of plasmas, characterized by an n-distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free-free emission from the correspond- ing temperature
When modelling an ionised plasma, all spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum. Until now no data set exi
Modern spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum emitted by an ionized plasma. Until now no set of data ex
We describe the deformed E.T. quantization rules for kappa-deformed free quantum fields, and relate these rules with the kappa-deformed algebra of field oscillators.
We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topo