ﻻ يوجد ملخص باللغة العربية
We show that single-slit two-photon ghost diffraction can be explained very simply by using a wave-packet evolution of a generalised EPR state. Diffraction of a wave travelling in the x-direction can be described in terms of the spreading in time of the transverse (z-direction) wave-packet, within the Fresnel approximation. The slit is assumed to truncate the transverse part of the wavefunction of the photon to within the width of the slit. The analysis reproduces all features of the two-photon single-slit ghost diffraction.
Even 100 years after its introduction by Louis de Broglie, the wave-nature of matter is often regarded as a mind-boggling phenomenon. To give an intuitive introduction to this field, we here discuss the diffraction of massive molecules through a sing
A three-slit ghost interference experiment with entangled photons is theoretically analyzed using wave-packet dynamics. A non-local duality relation is derived which connects the path distinguishability of one photon to the interference visibility of the other.
We show that the time frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time domain analysis. This advantage is crucial in reconstructing the in
In an effort to challenge the Copenhagen interpretation of quantum mechanics, Karl Popper proposed an experiment involving spatially separated entangled particles. In this experiment, one of the particles passes through a very narrow slit, and thereb
High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setu