ﻻ يوجد ملخص باللغة العربية
We report neutron scattering measurements of the structural correlations associated with the apparent relaxor transition in K$_{1-x}$Li$_x$TaO$_3$ for $x=0.02$ (KLT(0.02)). This compound displays a broad and frequency-dependent peak in the dielectric permittivity, which is the accepted hallmark of all relaxors. However, no evidence of elastic diffuse scattering or any soft mode anomaly is observed in KLT(0.02) [J. Wen et al., Phys. Rev. B 78, 144202 (2008)], a situation that diverges from that in other relaxors such as PbMg$_{1/3}$Nb$_{2/3}$O$_3$. We resolve this dichotomy by showing that the structural correlations associated with the transition in KLT(0.02) are purely dynamic at all temperatures, having a timescale on the order of $sim$THz. These fluctuations are overdamped, non-propagating, and spatially uncorrelated. Identical measurements made on pure KTaO$_3$ show that they are absent (within experimental error) in the undoped parent material. They exhibit a temperature dependence that correlates well with the dielectric response, which suggests that they are associated with local ferroelectric regions induced by the Li$^+$ doping. The ferroelectric transition that is induced by the introduction of Li$^+$ cations is therefore characterized by quasistatic fluctuations, which represents a stark contrast to the soft harmonic-mode-driven transition observed in conventional perovskite ferroelectrics like PbTiO$_3$. The dynamic, glass-like, structural correlations in KLT(0.02) are much faster than those measured in random-field-based lead-based relaxors, which exhibit a frequency scale of order of $sim$GHz and are comparatively better correlated spatially. Our results support the view that random fields give rise to the relaxor phenomena, and that the glass-like dynamics observed here characterize a nascent response.
Using density-functional ab initio theoretical techniques, we study (Ga$_{1-x}$In$_x$)$_2$O$_3$ in both its equilibrium structures (monoclinic $beta$ and bixbyite) and over the whole range of composition. We establish that the alloy exhibits a large
The compression of SH$_2$ and its subsequent decomposition to SH$_3$, presumably in a cubic Im$overline{3}$m structure, has lead to the discovery of conventional superconductivity with the highest measured and confirmed $T_c$ to date, 203 K at 160 GP
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment
We have studied the effect of Al doping on the structural, magnetic and electrical properties of La$_{1-x}$Ba$_x$Mn$_{1-x}$Al$_x$O$_3$ ($0leq x leq 0.25$) manganite, annealed in two 750$^oC$ and 1350$^oC$ temperatures. The XRD analysis shows that the
For disordered Heisenberg systems with small single ion anisotropy, two spin glass transitions below the long range ordered phase transition temperature has been predicted theoretically for compositions close to the percolation threshold. Experimenta