ﻻ يوجد ملخص باللغة العربية
Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.
In this paper we compare different theoretical approaches to describe the dispersion of collective modes in Yukawa fluids when the inter-particle coupling is relatively weak, so that kinetic and potential contributions to the dispersion relation comp
The high frequency (instantaneous) shear modulus of three-dimensional Yukawa systems is evaluated in a wide parameter range, from the very weakly coupled gaseous state to the strongly coupled fluid at the crystallization point (Yukwa melt). This allo
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, w
Lattice QCD with staggered fermions at strong coupling has long been studied in a dual representation to circumvent the finite baryon density sign problem. Monte Carlo simulations at finite temperature and density require anisotropic lattices. Recent
For a long time, strong coupling expansions have not been applied systematically in lattice QCD thermodynamics, in view of the succes of numerical Monte Carlo studies. The persistent sign problem at finite baryo-chemical potential, however, has motiv