ﻻ يوجد ملخص باللغة العربية
We study the physical properties of Zn$X$ ($X$=O, S, Se, Te) and Cd$X$ ($X$=O, S, Se, Te) in the zinc-blende, rock-salt, and wurtzite structures using the recently developed fully $ab$ $initio$ pseudo-hybrid Hubbard density functional ACBN0. We find that both the electronic and vibrational properties of these wide-band gap semiconductors are systematically improved over the PBE values and reproduce closely the experimental measurements. Similar accuracy is found for the structural parameters, especially the bulk modulus. ACBN0 results compare well with hybrid functional calculations at a fraction of the computational cost.
Wide band gap semiconductors are essential for todays electronic devices and energy applications due to their high optical transparency, as well as controllable carrier concentration and electrical conductivity. There are many categories of materials
Optical properties of ZnMnO layers grown at low temperature by Atomic Layer Deposition and Metalorganic Vapor Phase Epitaxy are discussed and compared to results obtained for ZnMnS samples. Present results suggest a double valence of Mn ions in ZnO l
Ultrawide-band-gap (UWBG) semiconductors are promising for fast, compact, and energy-efficient power-electronics devices. Their wider band gaps result in higher breakdown electric fields that enable high-power switching with a lower energy loss. Yet,
The ability to predict the likelihood of impurity incorporation and their electronic energy levels in semiconductors is crucial for controlling its conductivity, and thus the semiconductors performance in solar cells, photodiodes, and optoelectronics
We have investigated the Vanadium- (V) substituted Ni-Zn-Co ferrites where the samples were prepared using solid-state reaction technique. The impact of V5+ substitution on the structural, magnetic, dielectric and electrical properties of Ni-Zn-Co fe