ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of a Fermi liquid-like normal state in an iron-pnictide superconductor

477   0   0.0 ( 0 )
 نشر من قبل Erik van Heumen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are two prerequisites for understanding high-temperature (high-T$_c$) superconductivity: identifying the pairing interaction and a correct description of the normal state from which superconductivity emerges. The nature of the normal state of iron-pnictide superconductors, and the role played by correlations arising from partially screened interactions, are still under debate. Here we show that the normal state of carefully annealed electron-doped BaFe$_{2-x}$Co$_{x}$As$_2$ at low temperatures has all the hallmark properties of a local Fermi liquid, with a more incoherent state emerging at elevated temperatures, an identification made possible using bulk-sensitive optical spectroscopy with high frequency and temperature resolution. The frequency dependent scattering rate extracted from the optical conductivity deviates from the expected scaling $M_{2}(omega,T)propto(hbaromega)^{2}+(ppi k_{B}T)^{2}$ with $papprox$ 1.47 rather than $p$ = 2, indicative of the presence of residual elastic resonant scattering. Excellent agreement between the experimental results and theoretical modeling allows us to extract the characteristic Fermi liquid scale $T_{0}approx$ 1700 K. Our results show that the electron-doped iron-pnictides should be regarded as weakly correlated Fermi liquids with a weak mass enhancement resulting from residual electron-electron scattering from thermally excited quasi-particles.



قيم البحث

اقرأ أيضاً

277 - W. Wu , A. McCollam , I. Swainson 2008
We report transport and thermodynamic properties of stoichiometric single crystals of the hexagonal iron-pnictide FeCrAs. The in-plane resistivity shows an unusual non-metallic dependence on temperature T, rising continuously with decreasing T from ~ 800 K to below 100 mK. The c-axis resistivity is similar, except for a sharp drop upon entry into an antiferromagnetic state at T_N 125 K. Below 10 K the resistivity follows a non-Fermi-liquid power law, rho(T) = rho_0 - AT^x with x<1, while the specific heat shows Fermi liquid behaviour with a large Sommerfeld coefficient, gamma ~ 30 mJ/mol K^2. The high temperature properties are reminiscent of those of the parent compounds of the new layered iron-pnictide superconductors, however the T -> 0 properties suggest a new class of non-Fermi liquid.
81 - Q. Y. Chen , D. F. Xu , X. H. Niu 2016
Heavy fermion materials gain high electronic masses and expand Fermi surfaces when the high-temperature localized f electrons become itinerant and hybridize with the conduction band at low temperatures. However, despite the common application of this model, direct microscopic verification remains lacking. Here we report high-resolution angle-resolved photoemission spectroscopy measurements on CeCoIn5, a prototypical heavy fermion compound, and reveal the long-sought band hybridization and Fermi surface expansion. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized at the lowest temperature. Moreover, crystal field excitations likely play an important role in the anomalous temperature dependence. Our results paint an comprehensive unanticipated experimental picture of the heavy fermion formation in a periodic multi-level Anderson/Kondo lattice, and set the stage for understanding the emergent properties in related materials.
252 - Aaron Patz , Tianqi Li , Sheng Ran 2014
Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behavior these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven ne maticity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe_(1-x)Co_x)_2As_2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.
101 - M. Horio , K. P. Kramer , Q. Wang 2020
We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_4$ (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi-liquid cut-off energy scale, we find -- in contrast to hole-doped cuprates -- a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit -- the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale.
The SQCRAMscope is a recently realized Scanning Quantum CRyogenic Atom Microscope that utilizes an atomic Bose-Einstein condensate to measure magnetic fields emanating from solid-state samples. The quantum sensor does so with unprecedented DC sensiti vity at micron resolution from room-to-cryogenic temperatures. An additional advantage of the SQCRAMscope is the preservation of optical access to the sample: Magnetometry imaging of, e.g., electron transport may be performed in concert with other imaging techniques. This multimodal imaging capability can be brought to bear with great effect in the study of nematicity in iron-pnictide high-temperature superconductors, where the relationship between electronic and structural symmetry-breaking resulting in a nematic phase is under debate. Here, we combine the SQCRAMscope with an in situ microscope that measures optical birefringence near the surface. This enables simultaneous and spatially resolved detection of both bulk and near-surface manifestations of nematicity via transport and structural deformation channels, respectively. By performing the first local measurement of emergent resistivity anisotropy in iron pnictides, we observe sharp, nearly concurrent transport and structural transitions. More broadly, these measurements demonstrate the SQCRAMscopes ability to reveal important insights into the physics of complex quantum materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا