ﻻ يوجد ملخص باللغة العربية
The dynamical mean-field theory (DMFT) combined with the fluctuation exchange (FLEX) method, namely FLEX+DMFT, is an approach for correlated electron systems to incorporate both local and non-local long-range correlations in a self-consistent manner. We formulate FLEX+DMFT in a systematic way starting from a Luttinger-Ward functional, and apply it to study the $d$-wave superconductivity in the two-dimensional repulsive Hubbard model. The critical temperature ($T_c$) curve obtained in the FLEX+DMFT exhibits a dome structure as a function of the filling, which has not been clearly observed in the FLEX approach alone. We trace back the origin of the dome to the local vertex correction from DMFT that renders a filling dependence in the FLEX self-energy. We compare the results with those of GW+DMFT, where the $T_c$-dome structure is qualitatively reproduced due to the same vertex correction effect, but a crucial difference from FLEX+DMFT is that $T_c$ is always estimated below the N{e}el temperature in GW+DMFT. The single-particle spectral function obtained with FLEX+DMFT exhibits a double-peak structure as a precursor of the Hubbard bands at temperature above $T_c$.
We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi
Here we have developed a FLEX+DMFT formalism, where the symmetry properties of the system are incorporated by constructing a SO(4) generalization of the conventional fluctuation-exchange approximation (FLEX) coupled self-consistently to the dynamical
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$
We present in this work an exact renormalization group (RG) treatment of a one-dimensional $p$-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a $p$-wave gap. It is a paradigmatic model of great actual